
Evaluating Real-World Robot Manipulation Policies
in Simulation

Xuanlin Li∗1, Kyle Hsu∗2, Jiayuan Gu∗1, Karl Pertsch2 3 †, Oier Mees3 †, Homer Rich Walke3, Chuyuan Fu4,
Ishikaa Lunawat2, Isabel Sieh2, Sean Kirmani4, Sergey Levine3, Jiajun Wu2, Chelsea Finn2,

Hao Su‡1, Quan Vuong‡4, Ted Xiao‡4
1UC San Diego, 2Stanford University, 3UC Berkeley, 4Google Deepmind

∗Equal contribution †Core contributors ‡Co-advising
https://simpler-env.github.io

Real robot evaluation (train on real, evaluate in real)

Simulated evaluation (train on real, evaluate in sim)

Expensive and slow
Difficult to reproduce

Cheap and scalable
Fully reproducible

0.0 0.2 0.4 0.6 0.8 1.0

Real success rate

0.0

0.2

0.4

0.6

0.8

1.0

Ou
r s

im
ula

te
d

su
cc

es
s r

at
e

RT-1 RT-1-X RT-2-X Octo

Fig. 1: Characterizing generalist robot manipulation policies typically involves evaluating them on many tasks across many scenarios, a
laborious undertaking in the real world (top left). In this work, we design an evaluation procedure in which policies trained on real data are
evaluated in purpose-built simulated environments (bottom left). Our approach yields a strong correlation between real-world and simulated
performance (right) for various open-source robot policies [6, 11, 50] across two commonly used robot embodiments (Google Robot and
WidowX) and over ∼1500 evaluation episodes. These results highlight the potential of simulation-based approaches for evaluating generalist
real-world robot manipulation policies in a scalable, reproducible, and reliable way.

Abstract—The field of robotics has made significant advances
towards generalist robot manipulation policies. However, real-
world evaluation of such policies is not scalable and faces
reproducibility challenges, which are likely to worsen as policies
broaden the spectrum of tasks they can perform. In this work, we
demonstrate that simulation-based evaluation can be a scalable,
reproducible, and reliable proxy for real-world evaluation. We
identify control and visual disparities between real and simulated
environments as key challenges for reliable simulated evalua-
tion and propose approaches for mitigating these gaps without
needing to craft full-fidelity digital twins of real-world environ-
ments. We then employ these approaches to create SIMPLER,
a collection of simulated environments for manipulation policy
evaluation on common real robot setups. Through paired sim-
and-real evaluations of open-source manipulation policies, we
demonstrate strong correlation between policy performance in
SIMPLER environments and in the real world. Additionally,
we find that SIMPLER evaluations accurately reflect real-world
policy behavior modes such as sensitivity to various distribution
shifts. We open-source all SIMPLER environments along with
our workflow for creating new environments to facilitate research
on general-purpose manipulation policies and simulated evalua-
tion frameworks.

I. INTRODUCTION

Remarkable progress has been made in recent years towards
building generalist real-world robot manipulation policies [6,
50], i.e., policies that can perform a wide range of tasks
across many environments and even robot embodiments. These
advances are underpinned by large-scale datasets [11, 66] and
expressive models [1, 6, 29]. However, evaluating these poli-
cies in a scalable and reproducible way remains challenging as
real-world evaluation is expensive and inefficient. Compared to
the evaluation burden of works that study robot performance in
narrower settings, the scope of evaluations required for faithful
performance estimates of generalist policies increases with the
breadth of their abilities. This underlines a growing challenge
in robot manipulation research: as we scale the capabilities of
robot policies, how do we correspondingly scale our ability to
accurately, reproducibly, and comprehensively evaluate them?

In this work, we propose simulated evaluation as a pos-
sible answer, in which manipulation policies trained on real
data are evaluated in purpose-built simulated environments
(Fig. 1). Such real-to-sim evaluation can serve as a scal-

https://simpler-env.github.io

Simulated Manipulation Policy Evaluation
for Real Robot Setups

SIMPLER

Pick Coke Can Move Near

Open/Close Drawer Put Object in Drawer

Google Robot

Put Carrot on Plate

Stack Cubes Put Eggplant in Basket

Put Spoon on Towel

BridgeData V2

import simpler_env

env = simpler_env.make(
 "google_robot_pick_coke_can"
)
policy = load_policy()

env.reset()
env.step(
 policy.sample_action()
)

Fig. 2: We introduce SIMPLER, a suite of open-source simulated evaluation environments for common real robot manipulation setups, namely
the Google Robot evaluations from the RT-series of works [6, 5, 11], and environments from the BridgeData V2 dataset [66]. All environments
can be imported with a single line of code and can be interacted with through a standard Gym interface. Additionally, we open-source policy
inference code for real-to-sim evaluation of common generalist robot policies (RT-1 [6], RT-1-X [11], and Octo [50]), and we provide detailed
guides for evaluating new policies and creating new evaluation environments. All materials are available at https://simpler-env.github.io.

able, reproducible, and informative tool to complement gold-
standard real-world evaluations. Indeed, evaluation in sim-
ulation is common practice for testing autonomous driving
policies across a wide range of driving scenarios before real-
world deployment [16, 44, 71]. However, performing sim-
ulated evaluations for robotic manipulation poses additional
challenges due to the diverse interactions between agent and
environment. At the same time, research on sim-to-real policy
learning [55, 75] has demonstrated that considerable transfer
between simulation and the real world is possible even for
manipulation policies. While sim-to-real approaches typically
train in simulation and evaluate in the real world, we are
interested in the opposite question: how can we build systems
for evaluating manipulation policies trained on real data in
simulated environments?

One option to build such simulated environments is to
fully replicate an existing real-world environment by creating
a simulated “digital twin”, an approach popular in naviga-
tion [14, 32] and autonomous driving [48]. However, for
robot manipulation, reconstructing dynamic and interactive
objects [70], along with realistic materials and lighting [31]
in simulation remains an open research question. Furthermore,
building full-fidelity digital twins demands extensive time and
resources, typically requiring digital artists to manually craft
object geometries and materials [14, 59]. Capturing precise
physical properties of objects for manipulation simulation,
such as center of mass, inertia, static and dynamic friction,
further complicates scalability.

A key idea in this work is that we do not need an exact
replica of the real-world environment. Instead, we need a
simulated environment that is merely realistic enough, such
that the performance of policies evaluated in this simulation
environment correlates well with their real-world performance.
This allows us to design environment creation pipelines that

are more scalable than creating exact digital twins. Through
extensive experiments, we examine the challenges of build-
ing effective simulated evaluation pipelines: from control
disparities to visual disparities between real and simulated
environments. We then propose and evaluate approaches for
mitigating these differences based on offline system identifi-
cation, “green-screening” simulation observations using real-
world backgrounds, and object texture baking from real-world
images.

Using these techniques, we create SIMPLER (Simulated
Manipulation Policy Evaluation for Real Robot Setups), a suite
of simulated evaluation environments for commonly used real-
world robot manipulation environments, namely the RT-1 [6]
and the Bridge-V2 [66] evaluation setups (Fig. 2). For both
setups, we perform extensive paired sim-and-real evaluations
for multiple open-source manipulation policies such as RT-1-
X [11] and Octo [50], and we demonstrate strong correlation
between policy performance as assessed by SIMPLER and
the corresponding real environments (Fig. 1, right). In addi-
tion, we find that simulated policy evaluations in SIMPLER
environments accurately reflect policy behavior modes in the
real world, such as sensitivity to various distribution shifts.
As such, SIMPLER is a first step towards using simulated
evaluation as a tool for reliable, scalable, and reproducible
manipulation policy evaluation. In summary, our contributions
are as follows:

• We introduce SIMPLER, a suite of simulated evaluation
environments for commonly-used real robot manipulation
setups.

• We address the challenges inherent in simulated ma-
nipulation policy evaluation by proposing approaches
to mitigate real-to-sim control and visual gaps. As a
result, we demonstrate strong correlation between real
and simulated policy performance and behavior modes.

https://simpler-env.github.io

• We open-source our workflow for constructing SIMPLER
environments to facilitate research on general-purpose
manipulation policies and simulated evaluation frame-
works.

II. RELATED WORK

Reproducible evaluation of real robot policies is a long-
standing challenge in the robotics community. While bench-
marks exist for specific problems such as grasping [19, 41, 42]
and motion planning [8, 46], extending such benchmarks to
a broader set of robotics tasks is challenging. Initiatives like
YCB [7] and NIST [65] were introduced to standardize ob-
jects, yet standardizing other variables such as lighting, camera
setups, and workspaces proves difficult. Many real-world robot
challenges, including the Amazon Picking Challenge [12] and
DARPA Robotics Challenges [35], have addressed this by
using fixed physical evaluation sites. TOTO [76] provides
remote users with access to shared robotic hardware and
an open-source dataset for offline training, which enable the
evaluation of methods on standardized tasks. RB2 [13] estab-
lishes a framework for sharing experimental data between labs,
integrating local rankings from various labs to form global
rankings. Such benchmarks require ongoing maintenance of
real-world evaluation setups, representing a significant long-
term investment. As real-world robotic datasets [6, 11, 66]
and generalist policies [4, 5, 50, 58] proliferate, the demand
for reliable, scalable, and reproducible methods of evaluating
these policies grows. The need is particularly acute given
the difficulty faced by the research community in conducting
evaluations without standardized hardware.

Simulation-based algorithmic research offers an alternative
to real-world evaluation. A wide range of simulation bench-
marks [18, 22, 23, 28, 37, 43, 45, 47, 54, 62, 63, 73, 77] have
been established to facilitate scalable and reproducible evalua-
tion. Moreover, several real-world robotics challenges [21, 40]
have incorporated simulation components, allowing partici-
pants to test and compete in a more affordable and flexible
way. However, most prior works consider both training and
evaluation in simulation, and the resulting policies might ex-
hibit distinct behaviors when deployed on real robot hardware.
In contrast, we aim to both measure and enhance simulated
evaluations’ ability to reflect a policy’s real-world performance
and behaviors.

Can simulated evaluations reliably predict real-world policy
performance and behavior modes? Multiple works explore this
question in the context of navigation tasks from a sim-to-real
perspective. They create virtual replicas of physical rooms
by either 3D scanning [32] or via artist-created assets [14],
and compare the performance of various models trained in
simulation in both simulated and real environments. Kadian
et al. [32] highlight that the sim-to-real gap may arise from
dynamic differences, noting that navigation policies trained in
simulation may exploit simulator imperfections. Deitke et al.
[14] demonstrate that visual discrepancies can significantly
impact policies, even when the simulation assets are crafted
by skilled digital artists. Zhang et al. [74] translate the real

images of a navigation policy back to the synthetic domain
during deployment. In contrast to these works on navigation,
we focus on developing simulated evaluations for real-world
manipulation policies. Manipulation poses distinct challenges
for simulated evaluation due to the tight interaction loop
between policy and environment. It often involves dynamic
rather than static scenes, and complex action sequences where
even slight variations can significantly impact task outcomes.

For robot manipulation, the sim-to-real setting has been
extensively investigated, where one aims to train policies
in simulation and deploy in the real-world. In sim-to-real,
the discrepancy between simulation and reality, commonly
called the “reality gap”, is a key challenge. Domain random-
ization [52, 64], a common strategy employed to mitigate
this gap, introduces variations in simulator parameters during
training. This technique has proven successful in applications
such as locomotion [26, 36], manipulation with complex dy-
namics [9, 75], and dexterous in-hand manipulation [2, 56, 72].
In addition, domain adaptation methods are extensively uti-
lized to address visual discrepancies. For instance, Generative
Adversarial Networks (GANs) [3, 24, 27, 57] are trained to
modify images generated in simulations so they resemble the
style of real-world images. Alternatively, Du et al. [17] aim
to align the feature space of observations between simulated
and real-world environments, creating a more consistent visual
experience across these domains. In contrast to these works
on sim-to-real learning, we focus on the opposite question:
building simulation systems that effectively and faithfully eval-
uate real-world robot manipulation policies. To this end, we
introduce approaches to address both real-to-sim visual and
control gaps to enhance real-&-sim evaluation correlations.

III. USING PHYSICS SIMULATORS FOR EVALUATION OF
ROBOT MANIPULATION POLICIES

In this work, we study the problem of using physics simu-
lators to evaluate the performance and examine the behavior
modes of real robot manipulation policies. In this section,
we outline our problem definition and discuss metrics for
measuring the quality of simulated evaluation pipelines.

A. Problem Formulation

Simulated evaluations have great potential as a tool for
practitioners: they can reduce the need for costly real-world
evaluations and provide a more comprehensive picture of
a policy’s performance by enabling sweeps across a wide
range of controlled environment conditions at negligible added
cost. Yet, we emphasize that our goal is not to completely
replace real-world evaluations: a simulator will always be an
imperfect proxy for the real world. Instead, our aim is to give
practitioners a readily available signal for policy improvement
to guide their research.

With this in mind, the main goal of simulated evaluations
is not to obtain a 1:1 reproduction of a policies’ real-world
behavior, but instead a strong correlation in relative policy
performance between simulation and real rollouts. That is,
if one policy performs better than another in real-world

Large rank violation

Small rank violation

Poor real-and-sim correlationStrong real-and-sim correlation Overfit to noise in real evalOnly linear fit

Real success rate Real success rate Real success rate Real success rate

S
im

 s
uc

ce
ss

 r
at

e

S
im

 s
uc

ce
ss

 r
at

e

S
im

 s
uc

ce
ss

 r
at

e

S
im

 s
uc

ce
ss

 r
at

e

Good Sim Eval Bad Sim Eval Limitations of Pearson Correlation

Fig. 3: Illustration of Mean Maximum Rank Violation (MMRV, range [0, 1], lower is better) and Pearson correlation coefficient (Pearson
r, range [−1, 1], higher is better) for assessing the correlation between policy performances in real-world and simulation, as well as the
overall quality of simulated evaluation pipelines. Each circle represents a policy. For the two leftmost pipelines, both metrics yield valuable
insights, identifying one as poor and the other as good. The two rightmost examples highlight limitations of Pearson r: it can penalize
simulation pipelines that fail to linearly recover the real results despite recovering the correct ranking, and it is overly sensitive to minor
noise in evaluations when different policies perform similarly in the real world.

evaluations, we want the same comparison to hold in our
simulated evaluation. The simulation would then afford a
reliable proxy improvement signal for practitioners to iterate on
design decisions. Formally, consider two policies πa and πb for
which we have obtained real-world performance measures Ra

and Rb, e.g., their average success rate across a representative
set of tasks, by running real robot evaluations. Our goal is to
construct a simulator S, for which there is a strong correlation
between the relative performances in real and the relative
performances in simulation RS,a and RS,b.

B. Metrics for Real-to-Sim Evaluation Pipelines

A standard approach for measuring the correlation be-
tween two variables is the Pearson correlation coefficient
(Pearson r) [51]. It assesses the linear consistency between
the two variables and has been used to measure the qual-
ity of simulated evaluation pipelines in prior work [32] by
measuring the correlation between real-world and simulated
evaluation performance. A high Pearson correlation of ≃ 1
indicates a well functioning simulated evaluation pipeline,
where improvements in real-world success rate are reflected
in a linear increase in simulated success rate (see dashed line
in Fig. 3, far left). In contrast, a lower Pearson correlation
may indicate a weaker connection between real-world and
simulated evaluation performance (Fig. 3, middle left).

However, Pearson correlation has two important drawbacks
when used as the sole metric for judging simulated evaluation
pipelines. First, it only assesses the linear fit between real
and simulated performance. Yet, for simulated evaluation we
do not necessarily need to have a linear relationship, as
long as the simulated pipeline reflects real-world performance
improvements between different policies (Fig. 3, middle right).
Second, Pearson correlation does not reflect the range of
values it is computed over. Thus, for policy sets that lie within
a narrow range of real-world performances, r may change
drastically based on small real-world performance differences,
which can often be attributed to the inherent noise in real-
world evaluations (Fig. 3, far right grey vs. green).

To address the first point, we can additionally report a
ranking metric that measures whether the simulated evalu-

ation ranks the policies correctly based on their real-world
performance, independent of a linear performance relationship.
However, conventional ranking metrics like Spearman’s rank
correlation coefficient [61] still suffer from the second short-
coming: they operate purely on the rankings and disregard
the underlying margins between real values. As a result, both
simulated evaluation pipelines on the far-left and middle-
left of Fig. 3 would be assigned the same rank correlation
score, since both commit exactly one rank violation (red),
even though the far-left evaluation pipeline provides a much
stronger improvement signal and is thus clearly preferable. The
key point is that we need to take the magnitude of the rank
violation into account, measured as the difference in real-world
performance between the mis-ranked policies. This provides
a clear signal whether rank violations are caused by small
real-world performance differences that are often a result of
inherent noise in real robot evaluations, like in the far-left
example of Fig. 3, or constitute clear failures of the evaluation
pipeline, like in the middle-left example of Fig. 3.

Thus, we propose the Mean Maximum Rank Violation
(MMRV) metric to better assess real-and-sim policy ranking
consistency. Given N policies π1...N and their respective
performance measures (e.g., success rates) R1...N , RS,1...N

from real and simulated evaluations, MMRV is computed as
follows:

RankViolation(i, j) = |Ri −Rj | (1)
· 1[(RS,i < RS,j) ̸= (Ri < Rj)]

MMRV(R,RS) =
1

N

N∑
i=1

max
1≤j≤N

RankViolation(i, j).

(2)

The key underlying quantity is the rank violation between
two policies πi and πj , which weighs the significance of the
simulator incorrectly ranking the items by the corresponding
margin in real-world performance. MMRV aggregates the N2

rank violations by averaging the worst-case rank violation for
each policy. In the remainder of this paper, we will report both
the MMRV and Pearson correlation metrics.

IV. BUILDING A REAL-TO-SIM EVALUATION SYSTEM BY
ADDRESSING CONTROL AND VISUAL GAPS

This section introduces our approach for designing a simu-
lation evaluation pipeline for real robot manipulation policies.
When choosing aspects of the simulation problem to focus
on, we take inspiration from the rich literature on sim-to-
real policy learning [2, 52, 64, 75]. Commonly, there are two
axes along which simulator fidelity can impact transferrability
between simulation and the real world: gaps in the dynamics
of the control system and gaps in visual realism. Although in
this work we focus on the opposite problem, i.e., evaluating
policies trained on real data in simulated environments, we
demonstrate in Section VI that the same axes of simulator
fidelity significantly affect the informativeness of simulated
evaluations. Next, we will describe our approach for address-
ing the control and visual gaps between simulation and the
real world.

A. Mitigating the Real-to-Sim Control Gap

The goal of mitigating the control gap between simulated
and real-world environments is to ensure that policy actions
executed in simulation yields comparable effects on the robot’s
end-effector as those observed when executed on the real
robot. Practically, this means that when we execute a trajectory
of actions in an open-loop manner in simulation, we want the
resulting 6D end-effector pose trajectory and the joint position
trajectory to closely mirror those observed in a real robot
rollout of the same actions.

Concretely, let {(xi, Ri) : xi ∈ R3, Ri ∈ SO(3)}Ti=1 be
a 6D end-effector pose trajectory recorded in the real-world
when rolling out an action trajectory {ai}Ti=1. Let {(x′

i, R
′
i) :

x′
0 = x0, R

′
0 = R0}Ti=1 be the corresponding simulation

trajectory when unrolling the same sequence of actions in
the simulation in an open-loop manner using stiffness and
damping parameters (i.e., PD parameters) (p,d). Then, we
have the following system identification losses from translation
and rotation errors:

Ltransl(p,d) =
1

T

T∑
i=1

||xi − x′
i||2 (3)

Lrot(p,d) =
1

T

T∑
i=1

arcsin

(
1

2
√
2
||Ri −R′

i||F
)

(4)

Lsysid(p,d) = Ltransl + Lrot (5)

In practice, we use a small sample of trajectories from an
offline dataset D, e.g., a demonstration dataset collected in the
real environment, to retrieve action and end-effector pose tra-
jectories and compute the system identification losses above.
For all environments we consider in this work, we use trajecto-
ries from existing open-source demonstration datasets [6, 66],
and thus do not need to collect any new data.

Next, we optimize the parameters of our controller:
given initial PD parameters (p0,d0) and a search range
(plow,0,phigh,0,dlow,0,dhigh,0), we normalize the range to [0, 1]
and perform simulated annealing [53] to optimize Lsysid.

Real Sim w/o SysID Sim w/ SysID

Fig. 4: We perform system identification (SysID) for closing the
control gap between real and simulated environments. We visualize
the open-loop execution of demonstration actions (using 6D end-
effector pose control) for picking up a coke can before and after
SysID (Section IV-A). Afterwards, the simulated robot arm tracks
the real motion much more accurately and successfully reproduces
the pick-up behavior.

We then select the PD parameters with the lowest Lsysid as
(p1,d1), and initialize another round of simulated annealing
with a reduced parameter search range. In total, we perform
3 rounds of simulated annealing.

We qualitatively illustrate the effects of our system iden-
tification for one of our simulated environments, the Google
Robot [6], in Fig. 4. We find that naively using PD parameter
values from real controllers results in inaccurate tracking of
the real robot’s end-effector movements, which culminates in
a missed grasp on the coke can. After system identification,
the controller more accurately tracks the motion in simulation:
the robot is able to grasp the object when replaying the
demonstration’s action sequence.

B. Mitigating the Real-to-Sim Visual Gap

Visual discrepancies between real-world and simulated en-
vironments can comprise a distribution shift that adversely
affects a learned policy’s behavior, rendering simulated evalua-
tion unreliable [14]. While modern graphics pipelines are able
to create highly realistic visuals, developing the underlying
assets and determining the lighting parameters to accurately
model existing environments involves significant manual labor.
Our goal is to match the simulator visuals to those of the
real-world environment with only a modest amount of man-
ual effort. For the scene background, we propose a “green
screening” approach in which we overlay an image of the
real-world environment onto the background of the simulated
scene (see Fig. 5). Concretely, we perform the following steps:
(1) we remove the robot and foreground objects from the first
frame of a real-world evaluation video Ireal using online image
inpainting tools (e.g., https://cleanup.pictures/); (2) we create a
binary mask M isolating the foreground objects (robot arm and
interactable objects, such as tabletop objects and articulated
objects) in the simulation rendering Isim by querying ground
truth segmentation masks in simulation with a few lines of
code; and (3) we combine the real-world background with the
simulation foreground: I ′ = M⊙Isim +(1−M)⊙Ireal, which
produces the green screened image.

In practice, we find that performing this background green-
screening alone can be insufficient to bridge the visual gap
between simulation and real world: the tested policies are
often sensitive to changes in foreground object and robot
textures. At the same time, readily available simulation assets

https://cleanup.pictures/

Real Raw Sim Sim
+ Green Screen
+ Texture Matching

Sim
+ Green Screen

Fig. 5: Illustration of our “Visual Matching” approach for reducing
the visual appearance gap between real environments and raw simula-
tion. Visual Matching consists of (1) green screening, i.e. segmenting
out interactive simulated assets and overlaying them onto real-world
backgrounds; and (2) texture matching, which involves projecting real
object textures onto simulation assets and tuning robot arm colors
using real videos.

exhibit appearance differences from real-world objects due to
a combination of texture, material, and lighting factors. Thus,
for objects and robot links with the most noticeable real-to-sim
visual gap, we tune simulation asset textures to more closely
match their real-world counterparts. Concretely, we employ
two strategies:

• For objects with substantially different textures, we
project the real texture onto the simulation object by
(1) segmenting the object in a real-world image; (2) align-
ing the simulated object pose to the real image; and
(3) “unprojecting” the texture onto the object mesh in
simulation. We provide step-by-step instructions and a
command line script for performing this “texture match-
ing” in Appendix Section C-B.

• For assets like robot visual meshes with texture maps
already resembling their real-world counterparts, we can
instead selectively copy and paste color values from real
to simulated texture maps, e.g. using bucket-paint tools
in the GNU Image Manipulation program.

We visualize results of this texture tuning in Fig. 5. Finally, as
robot arms may change colors during movement, we found it
helpful to obtain multiple tuned robot arm colors that match
the real-world textures from different phases of a manipulation
task. We then average their evaluation results to mitigate this
confounding factor.

As an alternative to the “Visual Matching” strategy de-
scribed above, we explore a mitigation strategy for real-to-
sim visual gaps inspired by domain randomization: instead of
minimizing the gap, we heavily randomize visual aspects of
the scene to create environment “variants”. We test whether we
can get a more faithful estimate of a policy’s performance by
aggregating evaluation results across multiple such variants.
See Appendix Section C-C for a detailed description and

visualization of the applied randomizations. We empirically
compare this randomization approach, which we denote as
Variant Aggregation, to our main Visual Matching method
in Section VI.

V. SIMPLER: SIMULATED MANIPULATION POLICY
EVALUATION FOR REAL ROBOT SETUPS

We apply the approaches introduced in Section IV to
create SIMPLER (Simulated Manipulation Policy Evaluation
for Real Robot Setups), a suite of simulated evaluation envi-
ronments for commonly used real robot evaluation setups: the
Google Robot from the RT series of works [6, 5, 11] and the
WidowX BridgeV2 setup [66].

For each setup, we provide simulations for multiple tasks
spanning a range of skills, interacted objects, object posi-
tions and orientations, backgrounds, and lighting conditions
(see Fig. 2). The tasks are chosen to be representative of those
in the corresponding training datasets, while also involving
largely rigid body objects whose dynamics can be reasonably
well-approximated by modern physics simulators.

We instantiate SIMPLER on top of the SAPIEN physics
simulator [68], but show in Section VI-D that our contributions
are independent of the used simulator and can be reproduced
in Isaac Sim [49]. To obtain assets and scenes for SIMPLER
environments, we perform the following procedure (further
details are presented in Appendix, Section C):

• We obtain robot URDF assets either from public GitHub
repositories or through ROS export. If robot camera in-
trinsics are unknown, we obtain them from real evaluation
video frames using efficient interactive GUI tools such as
fSpy.

• We obtain assets for common objects like cans and apples
from the Objaverse 3D model repository [15], and we
obtain textured meshes for less common objects through
3D scanning or via online single-view 3D reconstruction
API [39] given a reference image. We then adjust their
sizes in Blender to match the real dimensions, and we cre-
ate texture-tuned assets for Visual Matching evaluations
through the process described in Section IV-B. Finally,
we use CoACD [67] to obtain convex collision shapes
for all assets.

• For articulated objects such as the cabinet used in the
Google Robot Drawer tasks, we manually construct its
articulated model and then use the aforementioned pro-
cesses to “bake” its textures. This articulated object
modeling process takes the most human effort among
the entire simulation environment construction process,
and we highlight the acceleration of this process through
approaches like multi-view [25] or interactive [30] artic-
ulated object generation as an avenue for future work.

• We set a uniform density for the object assets by query-
ing their common material density in GPT-4 or Google
search, or, for objects with non-uniform densities like
empty coke can), querying their mass and dividing by
their volume. We also assign the friction coefficients of
objects based on their common material properties.

• Finally, we tune our robot and camera poses in simu-
lation such that the edges of fixed objects (e.g., tables
or cabinets) along with the observed robot gripper at
initialization roughly align between simulation and the
real-world.

Users can easily install SIMPLER environments via pip
and interact with them via the common Gym environment API
(see Fig. 2). A single environment renders at 3.5k simulation
steps per second on a consumer NVIDIA 4090 GPU at 640×
512 image resolution. Under a 500 Hz simulation frequency,
this amounts to a 7× speedup over real eval. We open-source
all SIMPLER environments as well as a detailed guide for
environment creation at https://simpler-env.github.io.

VI. EXPERIMENTAL RESULTS

In this section, we empirically test the performance cor-
relation between real-world robot evaluations and simulated
evaluations in SIMPLER environments for a representative
set of open-source generalist robot manipulation policies.
Concretely, we aim to answer the following questions:

1) Do relative performances of different manipulation
policies in simulation strongly correlate with the relative
performances observed in real evaluation?

2) Can simulated evaluations not only capture the perfor-
mance relationships across different policies, but also
accurately reproduce real-world policy behavior modes
within the same policy, like sensitivity to various
visual distribution shifts? Additionally, can simulated
evaluations predict the robustness of policies to novel
distribution shifts in the real world?

3) To what extent do control and visual gaps affect the
effectiveness of simulated evaluation?

4) When building simulation environments, we simplified
object and robot’s physical properties like center of
mass and static & dynamic friction, as their precise

modeling and system identification are challenging and
time-consuming. Is our simulated evaluation sensitive to
such physical property gaps?

5) Are our results applicable for a different physics sim-
ulator?

A. Experimental Setup

To quantitatively evaluate correlations between real and
simulation policy performance, we perform paired sim-and-
real experiments. We use popular open-source generalist robot
policies: RT-1-X [11] and Octo [50] (Octo-Base and Octo-
Small). For evaluations in the Google Robot environments,
we additionally use a number of RT-1 [6] checkpoints at
various stages of training: RT-1 trained to convergence (RT-
1 (Converged)), RT-1 at 15% of training steps (RT-1 (15%)),
and RT-1 at the beginning of training (RT-1 (Begin)). We also
report results on RT-2-X [5]. Detailed evaluation protocols
for each task, including the number of evaluation trials, are
presented in the supplementary.

For Octo simulated evaluations, since the model involves
a non-deterministic diffusion head, we average its success
rates across three different random seeds to produce a lower-
variance estimate of the policy’s simulation performance. Ad-
ditionally, for Google Robot simulated evaluations, we average
results over four versions of robot arm and gripper colors to
account for changes in arm texture during real robot rollouts
(see Section IV-B). For the WidowX environments, given the
consistent black color of the arm and gripper across videos,
we skip this step.

B. SIMPLER Environments Show Strong Performance Corre-
lations with Real-World Evaluations

We summarize the results of our main paired real-world
and simulation evaluations in Fig. 6 and Fig. 7. We observe a
strong correlation between the relative performances in sim-
ulation and in the real world across most policy checkpoints

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

SI
M

PL
ER

-V
isM

at
ch

 su
cc

es
s r

at
e MMRV = 0.031 ↓ r= 0.976 ↑

Pick Coke Can

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
MMRV = 0.111 ↓ r= 0.855 ↑

Move Near

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
MMRV = 0.055 ↓ r= 0.915 ↑

Open/Close Drawer

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
MMRV = 0.000 ↓ r= 0.969 ↑

Open Drawer and Place Apple
Google Robot

Real success rate
RT-1 (Begin) RT-1 (15%) RT-1 (Converged) RT-1-X RT-2-X Octo-Base

Fig. 6: Real vs. SIMPLER success rates on Google Robot tasks. SIMPLER environments with the “Visual Matching” evaluation setup show
strong correlation to real policy performance. Good simulated evaluation environments have low MMRV, i.e., only produce rank violations
for policies with similar real-world success rates, along with high Pearson correlation (r). See Table IV for detailed results.

https://simpler-env.github.io

0.0 0.2 0.4 0.6 0.8 1.0

Real success rate

0.0

0.2

0.4

0.6

0.8

1.0

S
IM

P
LE

R
-V

is
M

at
ch

 s
uc

ce
ss

 ra
te

MMRV = 0.014 ↓ r= 0.890 ↑
BridgeData V2

RT-1-X Octo-Base Octo-Small
Grasp Spoon
Put Spoon
on Towel

Grasp Carrot
Put Carrot
on Plate

Grasp Green Block
Stack Green Block
on Yellow Block

Grasp Eggplant
Put Eggplant
in Yellow Basket

Fig. 7: Real vs. simulation success rates for BridgeData V2 tasks.
SIMPLER evaluations have strong correlation with real policy per-
formance: for all but one task (light orange), all policies are ranked
correctly. MMRV and Pearson r are estimated per task and averaged.
See Table V for detailed results.

Evaluation Protocol Pick Coke Can Move Near Drawer Average

MMRV ↓

Validation MSE 0.412 0.408 0.306 0.375
SIMPLER-VarAgg (ours) 0.084 0.111 0.235 0.143
SIMPLER-VisMatch (ours) 0.031 0.111 0.027 0.056

Pearson r ↑

Validation MSE 0.464 0.230 0.231 0.308
SIMPLER-VarAgg (ours) 0.960 0.887 0.486 0.778
SIMPLER-VisMatch (ours) 0.976 0.855 0.942 0.924

TABLE I: Comparison of manipulation policy evaluation protocols
for ranking 6 common open-source policy checkpoints (3 RT-1
checkpoints, RT-1-X, RT-2-X, Octo-Base) on Google Robot tasks.
Using SIMPLER results in much stronger correlation with real eval-
uation than using validation MSE. Furthermore, “Visual Matching”
(VisMatch) outperforms “Variant Aggregation” (VarAgg). See Fig. 6
and Table IV for a detailed breakdown of results per policy.

and tasks we evaluate. This is an encouraging result for using
SIMPLER as a performance measurement tool during policy
development. Concretely, we find that policies with high real-
world performance, such as RT-1 (Converged) and RT-2-X on
Google Robot tasks and Octo-Small on BridgeData V2 tasks,
also obtain high performance in our simulated evaluations.
Models that obtain low real-world performance, such as RT-
1 (Begin) on Google Robot tasks and RT-1-X on BridgeData
V2 tasks, similarly have low performance in SIMPLER evalu-
ations in simulation. This consistency is reflected in low values
for the MMRV metric introduced in Section III and high values
for Pearson r. Additionally, we find that some policies have
higher sensitivity to visual differences between simulation and
real-world environments. For example, RT-1 (15%) and Octo-
Base exhibit the most significant success rate change between

real world and simulation.
In Table I, we compare SIMPLER with using action MSE

on validation episodes for policy ranking. Using validation
loss for model selection is common in supervised learning.
However, our analysis supports an intuition shared by many
robotics practitioners: we show that for imitation learning,
validation MSE is not a good proxy for a policy’s real-
world performance, leading to high MMRV and low Pearson
r. On the other hand, SIMPLER evaluations more accu-
rately reflect relative policy performances in the real-world,
obtaining significantly lower MMRV and higher Pearson r.
Additionally, we find that an alternative implementation of
SIMPLER using “Variant Aggregation” (Section IV-B) instead
of “Visual Matching” performs worse. As mentioned before,
some policies are more sensitive to visual discrepancies be-
tween reality and simulation. These issues are exacerbated
under Variant Aggregation, which has much larger visual
distribution shifts to the real world (Fig. 11), leading to higher
MMRV and lower Pearson correlation. In summary, simulated
manipulation policy evaluation with SIMPLER leads to
strong correlation with real-world policy performance, and
we recommend SIMPLER-“Visual Matching” as the default
approach since it directly minimizes visual discrepancies be-
tween real and simulated environments.

C. SIMPLER Evaluations Accurately Model Policy Robust-
ness to Distribution Shifts

In the previous section, we demonstrated that policy evalu-
ations on SIMPLER environments exhibit strong performance
relationship correlations with real robot evaluations, based
on average performances across evaluation trials. Beyond
comparing average policy performances, it would be bene-
ficial to let practitioners gauge more nuanced aspects of a
policy’s behavior, such as its robustness to distribution shifts
like lighting, background, and texture changes. We ask: do
SIMPLER evaluations accurately reflect a policy’s real-world
behavior under such distribution shifts, and can they thus be
used for more fine-grained policy evaluation beyond average
performance?

To test this, we use SIMPLER environments to perform
controlled experiments along five distribution shift axes in-
spired by Xie et al. [69]: background, lighting, distractors,
table texture, and robot camera pose. We adopt the base envi-
ronment setup and the two variations per axis from our Variant
Aggregation evaluation (see Section IV-B and Section C-C),
adding two more variations for the new camera pose axis.
We evaluate two RT-1 checkpoints with different robustness
behaviors to distribution shifts. For simulated results and real-
world results, we report the difference in success rate with and
without each distribution shift:

∆Success(shift) =
1

2

2∑
k=1

(Success(shift, k)− Success(base))

(6)
Results are summarized in Fig. 8 and Table VI. We find

that SIMPLER evaluations accurately reflect the policies’

∆ Real success rate

−0.03
−0.08
−0.11

−0.39
−0.46

∆ SIMPLER success rate

Background

Lighting

Distractors

Table texture

Camera pose

−0.05
−0.06
−0.08

−0.14
−0.47

∆ Real success rate

−0.04
−0.08

−0.17
−0.17

−0.38
∆ SIMPLER success rate

Lighting

Distractors

Background

Table texture

Camera pose

−0.07
−0.06

−0.12
−0.19

−0.39

RT-1 Robustness
w/o Data Augmentation MMRV = 0.000 ↓ r= 0.831 ↑

w/ Data Augmentation MMRV = 0.016 ↓ r= 0.970 ↑

Fig. 8: Change in success rate under various distribution shifts for two
RT-1 policies trained without and with data augmentation. Success
rates are averaged across Google Robot “Pick Coke Can” and “Move
Near” tasks. SIMPLER evaluations accurately capture each policy’s
sensitivity to distribution shifts as well as the effect of training
with data augmentation. MMRV and Pearson r are calculated over
different factors of distribution shifts within the same policy. See
Table VI for detailed results.

 Real, original arm texture Real, new arm texture
SIMPLER, arm texture sensitivity

0.0 0.2 0.4 0.6 0.8 1.0

Success rate

RT-1-XOcto-Base

Fig. 9: SIMPLER evaluations can predict policy sensitivity to changes
in arm texture for multiple policies in Google Robot “Pick Coke Can”
task. See Table VIII for detailed results.

robustness to various distribution shifts in the real world.
Notably, in both simulation and reality, changing robot camera
poses and table textures has a significant impact on policy per-
formance, while the impact of lighting changes and distractors
are relatively minor.

Furthermore, we find that an even more fine-grained anal-
ysis beyond Fig. 8 is possible in our simulated evaluations.
For example, when varying the table texture in our real-world
evaluations, we find that both policies are more robust to
unseen solid table colors than unseen patterned table textures
(4% vs 25% performance decrease on average). This behavior
is well reflected in our simulated evaluations as well: policy

performance in simulation decreases by 2% on average when
introducing new solid table colors and by 24% for new
patterned textures.

Testing novel distribution shifts. Based on these results,
we put our simulated evaluations to the test and ask: can
SIMPLER evaluations be used to predict the robustness of
policies to new distribution shifts in the real world? Through-
out our simulated evaluations, we observe that Octo-Base is
particularly sensitive to changes in the simulated robot arm
textures. Specifically, under our “Visual Matching” evaluation
setup, its success rate is 0% using the untuned robot arm,
but 29.3% using one of our tuned robot arms. On the other
hand, RT-1-X, also trained on the same Open-X-Embodiment
dataset [11], exhibits higher robustness to different simulated
robot arm textures. To test whether this trend observed in sim-
ulation holds in real-world evaluations, we design a novel real-
world distribution shift evaluation, where we change the real
robot arm texture by wrapping it using multiple gift wrapping
papers (see Fig. 9 for an example). We report results in Fig. 9
and Appendix Table VIII. The real-world evaluations support
the simulated results: Octo-Base is more sensitive to changes
in arm texture than RT-1-X. This indicates that simulated
evaluations in SIMPLER environments can be predictive of
real-world policy behaviors under novel distribution shifts.

D. Ablation Studies

We ablate the effect of the approaches we introduced in
Section IV for closing the control and visual gaps between
simulation and real-world evaluations. We also investigate
the sensitivity of our simulated evaluation to the real-to-sim
physical property gap. Additionally, we show that our previous
findings are independent of the choice of the underlying
physics simulator.

Effect of system identification. To test the effect of system
identification on the correlation between simulated and real-
world evaluations, we repeat the simulated Google Robot
evaluations from Section VI-B (using the “Visual Matching”
approach), but perturb the stiffness and damping parameters
of the robot’s joints that were determined with the system
identification approach introduced in Section IV-A. In Table II,
we show that the noisy system identification parameters lead
to worse MMRV, i.e., worse correlation between simulated
and real-world evaluations. This underlines the importance of
accurate system identification for simulated evaluation.

Effect of visual matching. We ablate the impact of the
approaches we introduced in Section IV-B for matching the
visual appearances between simulated and real-world evalua-
tions. We use the RT-1 (Converged), RT-1 (Begin), and RT-
1-X checkpoints on the Google robot drawer opening and
closing tasks, and we compare the correlations between sim-
ulated and real-world evaluations for different combinations
of background “green-screening”, object texture, and robot
texture settings. Results are reported in Table III. We observe
the lowest MMRV and real-to-sim performance gap when
combining background “green-screening” with object texture
tuning for both drawer and robot assets. Interestingly, only

Control Parameters Control Loss ↓ MMRV ↓

Setting 1 0.267 0.070
Setting 2 0.432 0.100
SIMPLER SysID 0.131 0.031

TABLE II: Ablation of different control parameters for the Google
Robot “Pick Coke Can” task. SIMPLER’s system identification
approach (Section IV-A, Fig. 4) achieves the most accurate trajectory
tracking (control loss) and the best real-to-sim performance correla-
tion (MMRV).

Green
Screen

Drawer
Matching

Robot
Matching MMRV ↓ Real-Sim

Success Gap ↓

✗ ✗ ✗ 0.087 0.272
✗ ✓ ✗ 0.087 0.266
✗ ✗ ✓ 0.087 0.272
✗ ✓ ✓ 0.087 0.328
✓ ✗ ✗ 0.087 0.198
✓ ✓ ✗ 0.142 0.253
✓ ✓ ✓ 0.050 0.136

TABLE III: Ablation of methods for closing the visual gap between
simulated and real environments, evaluated with three policies on the
Google Robot “Open / Close Drawer” tasks (see Table IX for detailed
results). Using a combination of “green-screened” background and
curated foreground object and robot assets provides the best real-to-
sim performance correlations.

tuning the drawer but not the robot texture, or only using
tuned textures but no background “green-screening”, leads
to no correlation improvement over the baseline that does
not apply any approach for narrowing the real-to-sim visual
appearance gap. We hypothesize that inconsistencies between
the appearance of different parts of a scene can deteriorate
simulation policy performance. Thus, the approaches we in-
troduced in Section IV-B for narrowing the visual gap between
simulated and real scene can significantly improve real-and-
sim evaluation performance correlation, but only if applied
jointly and to all parts of a scene.

Sensitivity to physical property gap. When developing
SIMPLER environments, we simplified the physical properties
(e.g., center of mass and friction coefficients) of objects and
robots due to the complexity and time-consuming nature of
precise modeling and system identification. In this section,
we investigate whether our simulated evaluation is sensitive
to such real-to-sim physical property gap. We conduct 2
experiments: (1) For the “pick coke can” task, we vary the
mass of the empty coke can (by varying its density), along
with the static friction of the gripper finger; (2) For the
“open / close drawer” task, we vary the joint frictions of the
articulated cabinet. We report the MMRV and the Pearson
correlation results in Appendix Tab. X. We find that our
simulated evaluation remains effective across a spectrum of
plausible physical property parameters, evidenced by the low
MMRV and the high Pearson correlation, even though altering
these parameters has a moderate (≤ 15%) impact on the
success rates of different policies.

Sensitivity to choice of physics simulator. To investigate
whether our results are sensitive to the underlying physics
simulator, we reproduce the Google Robot evaluation in Isaac

Simulator Ablation
SAPIEN MMRV = 0.082 ↓ r= 0.923 ↑
Isaac Sim MMRV = 0.058 ↓ r= 0.919 ↑

0.0 0.2 0.4 0.6 0.8 1.0

Real success rate

0.0

0.2

0.4

0.6

0.8

1.0

SI
M

PL
ER

-V
ar

Ag
g

su
cc

es
s r

at
e

Fig. 10: Comparison of SIMPLER-“Variant Aggregation” using
SAPIEN (default) vs. Isaac Sim [49] on Google Robot “Pick Coke
Can” and “Move Near” tasks. Both physics simulators lead to
good correlation between simulated and real-world evaluation success
rates. See Table IV and Table XI for detailed results.

Sim [49]. The results in Fig. 10 and Appendix Table XI show
that the performance of SIMPLER is reproducible with the
Isaac simulator. In particular, we also observe a strong real-
to-sim performance correlation across most checkpoints for
SIMPLER-Isaac. This suggests that for the tasks we tested,
which for the most part involve rigid body manipulations, the
choice of physics simulator is not critical and our framework
can be reproduced on alternative physics simulators.

VII. CONCLUSION

As the capabilities of generalist robot manipulation policies
grow, developing scalable approaches for policy evaluation
will be crucial to enable rapid iteration and improvement of
algorithms, models and datasets. In this work, we investigate
simulated evaluation as a tool to complement costly real-world
robot evaluations. We introduce SIMPLER, a suite of sim-
ulated manipulation evaluation environments for commonly
used real robot evaluation setups. In paired sim-&-real ex-
periments across multiple open-source generalist policies, we
show that SIMPLER results in strong performance relationship
correlations with real evaluations. Additionally, we demon-
strate that SIMPLER evaluations accurately capture fine-
grained characteristics of real-world policies beyond average
performance, such as their robustness to various distribution
shifts. Finally, we ablate which design decisions for building
simulated manipulation evaluation environments are important
for strong real-to-sim correlation.

Limitations. Our current set of environments has several
limitations. First, we focus our evaluations on rigid-object
manipulation tasks, as their physics are most straight-forward
to simulate with modern physics simulators. Much recent work
in robotic manipulation has demonstrated impressive tasks that

go beyond rigid object manipulation [20, 10, 33]. Extending
simulated evaluation beyond rigid object tasks, e.g., by lever-
aging recent work on soft-object physics simulation [38], is
an exciting avenue for future work. Additionally, our current
“green-screening” approach is limited to fixed cameras and
does not accurately capture object shadows and other visual
details. Finally, our current pipeline for generating simulated
evaluation environments involves some manual effort in curat-
ing assets and assembling scenes. Enabling a fully-automatic
and more scalable pipeline for creating thousands of realistic
simulated environments is an ambitious goal for future work.

VIII. ACKNOWLEDGEMENTS

We sincerely thank Jeffery Bingham and Paul Wohlhart
from Google DeepMind for clarifying some details of the
Google Robot controller. We also thank Justice Carbajal,
Samuel Wan, Jornell Quiambao, Deeksha Manjunath, Jaspiar
Singh, Sarah Nguyen, Jodilyn Peralta, and Grecia Salazar for
conducting real-world Google Robot experiments. Addition-
ally, we thank Fanbo Xiang from UC San Diego for his help
on matching the real and simulation visual appearances of
foreground objects. Kyle Hsu was supported by a Sequoia
Capital Stanford Graduate Fellowship.

REFERENCES

[1] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-
man, Alex Herzog, Daniel Ho, Jasmine Hsu, Julian Ibarz,
Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui
Ruano, Kyle Jeffrey, Sally Jesmonth, Nikhil Joshi, Ryan
Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei
Lee, Sergey Levine, Yao Lu, Linda Luu, Carolina Parada,
Peter Pastor, Jornell Quiambao, Kanishka Rao, Jarek Ret-
tinghouse, Diego Reyes, Pierre Sermanet, Nicolas Siev-
ers, Clayton Tan, Alexander Toshev, Vincent Vanhoucke,
Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan,
and Andy Zeng. Do as I can, not as I say: Grounding
language in robotic affordances. In Conference on Robot
Learning (CoRL), 2022.

[2] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek
Chociej, Rafal Józefowicz, Bob McGrew, Jakub Pa-
chocki, Arthur Petron, Matthias Plappert, Glenn Powell,
Alex Ray, Jonas Schneider, Szymon Sidor, Josh Tobin,
Peter Welinder, Lilian Weng, and Wojciech Zaremba.
Learning dexterous in-hand manipulation. The Interna-
tional Journal of Robotics Research, 39(1):3–20, 2020.

[3] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart,
Yunfei Bai, Matthew Kelcey, Mrinal Kalakrishnan, Laura
Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, Sergey
Levine, and Vincent Vanhoucke. Using simulation
and domain adaptation to improve efficiency of deep
robotic grasping. In 2018 IEEE international conference
on robotics and automation (ICRA), pages 4243–4250.
IEEE, 2018.

[4] Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao,
Coline Devin, Alex X. Lee, Maria Bauza, Todor
Davchev, Yuxiang Zhou, Agrim Gupta, Akhil Raju,
Antoine Laurens, Claudio Fantacci, Valentin Dalibard,
Martina Zambelli, Murilo Martins, Rugile Pevcevi-
ciute, Michiel Blokzijl, Misha Denil, Nathan Batchelor,
Thomas Lampe, Emilio Parisotto, Konrad Żołna, Scott
Reed, Sergio Gómez Colmenarejo, Jon Scholz, Abbas
Abdolmaleki, Oliver Groth, Jean-Baptiste Regli, Oleg
Sushkov, Tom Rothörl, José Enrique Chen, Yusuf Aytar,
Dave Barker, Joy Ortiz, Martin Riedmiller, Jost Tobias
Springenberg, Raia Hadsell, Francesco Nori, and Nicolas
Heess. Robocat: A self-improving foundation agent for
robotic manipulation, 2023.

[5] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen
Chebotar, Xi Chen, Krzysztof Choromanski, Tianli Ding,
Danny Driess, Avinava Dubey, Chelsea Finn, Pete Flo-
rence, Chuyuan Fu, Montse Gonzalez Arenas, Keerthana
Gopalakrishnan, Kehang Han, Karol Hausman, Alexan-
der Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil
Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang,
Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey
Levine, Yao Lu, Henryk Michalewski, Igor Mordatch,
Karl Pertsch, Kanishka Rao, Krista Reymann, Michael
Ryoo, Grecia Salazar, Pannag Sanketi, Pierre Sermanet,
Jaspiar Singh, Anikait Singh, Radu Soricut, Huong Tran,
Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Ste-
fan Welker, Paul Wohlhart, Jialin Wu, Fei Xia, Ted
Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna
Zitkovich. RT-2: Vision-language-action models transfer
web knowledge to robotic control. In Conference on
Robot Learning (CoRL), 2023.

[6] Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine
Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Tomas
Jackson, Sally Jesmonth, Nikhil J Joshi, Ryan Julian,
Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-
Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina
Parada, Jodilyn Peralta, Emily Perez, Karl Pertsch, Jor-
nell Quiambao, Kanishka Rao, Michael Ryoo, Grecia
Salazar, Pannag Sanketi, Kevin Sayed, Jaspiar Singh,
Sumedh Sontakke, Austin Stone, Clayton Tan, Huong
Tran, Vincent Vanhoucke, Steve Vega, Quan Vuong, Fei
Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and
Brianna Zitkovich. RT-1: robotics transformer for real-
world control at scale. Proceedings of Robotics: Science
and Systems (RSS), 2023.

[7] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha
Srinivasa, Pieter Abbeel, and Aaron M Dollar. The ycb
object and model set: Towards common benchmarks for
manipulation research. In 2015 international conference
on advanced robotics (ICAR), pages 510–517. IEEE,
2015.

[8] Constantinos Chamzas, Carlos Quintero-Pena, Zachary

Kingston, Andreas Orthey, Daniel Rakita, Michael Gle-
icher, Marc Toussaint, and Lydia E Kavraki. Motion-
benchmaker: A tool to generate and benchmark motion
planning datasets. IEEE Robotics and Automation Let-
ters, 7(2):882–889, 2021.

[9] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk,
Miles Macklin, Jan Issac, Nathan Ratliff, and Dieter
Fox. Closing the sim-to-real loop: Adapting simulation
randomization with real world experience. In 2019
International Conference on Robotics and Automation
(ICRA), pages 8973–8979. IEEE, 2019.

[10] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric
Cousineau, Benjamin Burchfiel, and Shuran Song. Dif-
fusion policy: Visuomotor policy learning via action
diffusion. In Proceedings of Robotics: Science and
Systems (RSS), 2023.

[11] Open X-Embodiment Collaboration, Abhishek Padalkar,
Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Her-
zog, Alex Irpan, Alexander Khazatsky, Anant Rai,
Anikait Singh, Anthony Brohan, Antonin Raffin, Ayzaan
Wahid, Ben Burgess-Limerick, Beomjoon Kim, Bern-
hard Schölkopf, Brian Ichter, Cewu Lu, Charles Xu,
Chelsea Finn, Chenfeng Xu, Cheng Chi, Chenguang
Huang, Christine Chan, Chuer Pan, Chuyuan Fu, Coline
Devin, Danny Driess, Deepak Pathak, Dhruv Shah, Di-
eter Büchler, Dmitry Kalashnikov, Dorsa Sadigh, Edward
Johns, Federico Ceola, Fei Xia, Freek Stulp, Gaoyue
Zhou, Gaurav S. Sukhatme, Gautam Salhotra, Ge Yan,
Giulio Schiavi, Hao Su, Hao-Shu Fang, Haochen Shi,
Heni Ben Amor, Henrik I Christensen, Hiroki Furuta,
Homer Walke, Hongjie Fang, Igor Mordatch, Ilija Ra-
dosavovic, Isabel Leal, Jacky Liang, Jaehyung Kim,
Jan Schneider, Jasmine Hsu, Jeannette Bohg, Jeffrey
Bingham, Jiajun Wu, Jialin Wu, Jianlan Luo, Jiayuan
Gu, Jie Tan, Jihoon Oh, Jitendra Malik, Jonathan Tomp-
son, Jonathan Yang, Joseph J. Lim, João Silvério, Jun-
hyek Han, Kanishka Rao, Karl Pertsch, Karol Hausman,
Keegan Go, Keerthana Gopalakrishnan, Ken Goldberg,
Kendra Byrne, Kenneth Oslund, Kento Kawaharazuka,
Kevin Zhang, Keyvan Majd, Krishan Rana, Krishnan
Srinivasan, Lawrence Yunliang Chen, Lerrel Pinto, Liam
Tan, Lionel Ott, Lisa Lee, Masayoshi Tomizuka, Max-
imilian Du, Michael Ahn, Mingtong Zhang, Mingyu
Ding, Mohan Kumar Srirama, Mohit Sharma, Moo Jin
Kim, Naoaki Kanazawa, Nicklas Hansen, Nicolas Heess,
Nikhil J Joshi, Niko Suenderhauf, Norman Di Palo,
Nur Muhammad Mahi Shafiullah, Oier Mees, Oliver
Kroemer, Pannag R Sanketi, Paul Wohlhart, Peng Xu,
Pierre Sermanet, Priya Sundaresan, Quan Vuong, Rafael
Rafailov, Ran Tian, Ria Doshi, Roberto Martı́n-Martı́n,
Russell Mendonca, Rutav Shah, Ryan Hoque, Ryan Ju-
lian, Samuel Bustamante, Sean Kirmani, Sergey Levine,
Sherry Moore, Shikhar Bahl, Shivin Dass, Shuran Song,
Sichun Xu, Siddhant Haldar, Simeon Adebola, Simon
Guist, Soroush Nasiriany, Stefan Schaal, Stefan Welker,
Stephen Tian, Sudeep Dasari, Suneel Belkhale, Takayuki

Osa, Tatsuya Harada, Tatsuya Matsushima, Ted Xiao,
Tianhe Yu, Tianli Ding, Todor Davchev, Tony Z. Zhao,
Travis Armstrong, Trevor Darrell, Vidhi Jain, Vincent
Vanhoucke, Wei Zhan, Wenxuan Zhou, Wolfram Bur-
gard, Xi Chen, Xiaolong Wang, Xinghao Zhu, Xuanlin
Li, Yao Lu, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu,
Ying Xu, Yixuan Wang, Yonatan Bisk, Yoonyoung Cho,
Youngwoon Lee, Yuchen Cui, Yueh hua Wu, Yujin Tang,
Yuke Zhu, Yunzhu Li, Yusuke Iwasawa, Yutaka Matsuo,
Zhuo Xu, and Zichen Jeff Cui. Open X-Embodiment:
Robotic learning datasets and RT-X models. https:
//arxiv.org/abs/2310.08864, 2023.

[12] Nikolaus Correll, Kostas E Bekris, Dmitry Berenson,
Oliver Brock, Albert Causo, Kris Hauser, Kei Okada,
Alberto Rodriguez, Joseph M Romano, and Peter R Wur-
man. Analysis and observations from the first amazon
picking challenge. IEEE Transactions on Automation
Science and Engineering, 15(1):172–188, 2016.

[13] Sudeep Dasari, Jianren Wang, Joyce Hong, Shikhar Bahl,
Yixin Lin, Austin S. Wang, Abitha Thankaraj, Karanbir
Chahal, Berk Çalli, Saurabh Gupta, David Held, Ler-
rel Pinto, Deepak Pathak, Vikash Kumar, and Abhinav
Gupta. RB2: robotic manipulation benchmarking with
a twist. In Joaquin Vanschoren and Sai-Kit Yeung, edi-
tors, Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks 1, NeurIPS
Datasets and Benchmarks 2021, December 2021, virtual,
2021.

[14] Matt Deitke, Winson Han, Alvaro Herrasti, Anirud-
dha Kembhavi, Eric Kolve, Roozbeh Mottaghi, Jordi
Salvador, Dustin Schwenk, Eli VanderBilt, Matthew
Wallingford, Luca Weihs, Mark Yatskar, and Ali Farhadi.
Robothor: An open simulation-to-real embodied ai plat-
form. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 3164–
3174, 2020.

[15] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca
Weihs, Oscar Michel, Eli VanderBilt, Ludwig Schmidt,
Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi.
Objaverse: A universe of annotated 3d objects. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13142–13153,
2023.

[16] Alexey Dosovitskiy, German Ros, Felipe Codevilla, An-
tonio Lopez, and Vladlen Koltun. CARLA: An open
urban driving simulator. In Proceedings of the 1st Annual
Conference on Robot Learning, pages 1–16, 2017.

[17] Yuqing Du, Daniel Ho, Alex Alemi, Eric Jang, and Mohi
Khansari. Bayesian imitation learning for end-to-end
mobile manipulation. In International Conference on
Machine Learning, pages 5531–5546. PMLR, 2022.

[18] Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli Van-
derBilt, Luca Weihs, Eric Kolve, Aniruddha Kembhavi,
and Roozbeh Mottaghi. Manipulathor: A framework for
visual object manipulation. 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),

https://arxiv.org/abs/2310.08864
https://arxiv.org/abs/2310.08864

pages 4495–4504, 2021.
[19] Hao-Shu Fang, Chenxi Wang, Minghao Gou, and Cewu

Lu. Graspnet-1billion: A large-scale benchmark for
general object grasping. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 11444–11453, 2020.

[20] Zipeng Fu, Tony Z Zhao, and Chelsea Finn. Mo-
bile aloha: Learning bimanual mobile manipulation with
low-cost whole-body teleoperation. arXiv preprint
arXiv:2401.02117, 2024.

[21] Niklas Funk, Charles Schaff, Rishabh Madan, Takuma
Yoneda, Julen Urain De Jesus, Joe Watson, Ethan K
Gordon, Felix Widmaier, Stefan Bauer, Siddhartha S
Srinivasa, et al. Benchmarking structured policies and
policy optimization for real-world dexterous object ma-
nipulation. IEEE Robotics and Automation Letters, 7(1):
478–485, 2021.

[22] Ran Gong, Jiangyong Huang, Yizhou Zhao, Haoran
Geng, Xiaofeng Gao, Qingyang Wu, Wensi Ai, Ziheng
Zhou, Demetri Terzopoulos, Song-Chun Zhu, Baoxiong
Jia, and Siyuan Huang. Arnold: A benchmark for
language-grounded task learning with continuous states
in realistic 3d scenes. 2023 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 20426–
20438, 2023.

[23] Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Z. Ling, Xiqiang
Liu, Tongzhou Mu, Yihe Tang, Stone Tao, Xinyue Wei,
Yuan Yao, Xiao Yuan, Pengwei Xie, Zhiao Huang, Rui
Chen, and Hao Su. Maniskill2: A unified benchmark
for generalizable manipulation skills. In The Eleventh
International Conference on Learning Representations,
2023.

[24] Daniel Ho, Kanishka Rao, Zhuo Xu, Eric Jang, Mohi
Khansari, and Yunfei Bai. Retinagan: An object-aware
approach to sim-to-real transfer. 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages
10920–10926, 2020.

[25] Xiaoxia Huang, Ian Walker, and Stan Birchfield.
Occlusion-aware reconstruction and manipulation of 3d
articulated objects. In 2012 IEEE international con-
ference on robotics and automation, pages 1365–1371.
IEEE, 2012.

[26] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario
Bellicoso, Vassilios Tsounis, Vladlen Koltun, and Marco
Hutter. Learning agile and dynamic motor skills for
legged robots. Science Robotics, 4(26):eaau5872, 2019.

[27] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan,
Dmitry Kalashnikov, Alex Irpan, Julian Ibarz, Sergey
Levine, Raia Hadsell, and Konstantinos Bousmalis. Sim-
to-real via sim-to-sim: Data-efficient robotic grasping
via randomized-to-canonical adaptation networks. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12627–12637,
2019.

[28] Stephen James, Zicong Ma, David Rovick Arrojo, and
Andrew J Davison. Rlbench: The robot learning bench-

mark & learning environment. IEEE Robotics and
Automation Letters, 5(2):3019–3026, 2020.

[29] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler,
Frederik Ebert, Corey Lynch, Sergey Levine, and Chelsea
Finn. BC-z: Zero-shot task generalization with robotic
imitation learning. In 5th Annual Conference on Robot
Learning, 2021.

[30] Zhenyu Jiang, Cheng-Chun Hsu, and Yuke Zhu. Ditto:
Building digital twins of articulated objects from inter-
action. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

[31] Haian Jin, Isabella Liu, Peijia Xu, Xiaoshuai Zhang,
Songfang Han, Sai Bi, Xiaowei Zhou, Zexiang Xu,
and Hao Su. Tensoir: Tensorial inverse rendering. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2023.

[32] Abhishek Kadian, Joanne Truong, Aaron Gokaslan,
Alexander Clegg, Erik Wijmans, Stefan Lee, Manolis
Savva, S. Chernova, and Dhruv Batra. Sim2real predic-
tivity: Does evaluation in simulation predict real-world
performance? IEEE Robotics and Automation Letters, 5:
6670–6677, 2019.

[33] Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ash-
win Balakrishna, Sudeep Dasari, Siddharth Karam-
cheti, Soroush Nasiriany, Mohan Kumar Srirama,
Lawrence Yunliang Chen, Kirsty Ellis, et al. Droid: A
large-scale in-the-wild robot manipulation dataset. arXiv
preprint arXiv:2403.12945, 2024.

[34] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo,
Piotr Dollár, and Ross B. Girshick. Segment anything.
2023 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 3992–4003, 2023.

[35] Eric Krotkov, Douglas Hackett, Larry Jackel, Michael
Perschbacher, James Pippine, Jesse Strauss, Gill Pratt,
and Christopher Orlowski. The darpa robotics challenge
finals: Results and perspectives. The DARPA robotics
challenge finals: Humanoid robots to the rescue, pages
1–26, 2018.

[36] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra
Malik. RMA: rapid motor adaptation for legged robots.
In Robotics: Science and Systems, 2021.

[37] Chengshu Li, Ruohan Zhang, J. Wong, Cem Gokmen,
Sanjana Srivastava, Roberto Martı́n-Martı́n, Chen Wang,
Gabrael Levine, Michael Lingelbach, Jiankai Sun, Mona
Anvari, Minjune Hwang, Manasi Sharma, Arman Aydin,
Dhruva Bansal, Samuel Hunter, Kyu-Young Kim, Alan
Lou, Caleb R. Matthews, Ivan Villa-Renteria, Jerry Tang,
Claire Tang, Fei Xia, Silvio Savarese, Hyowon Gweon,
C. Karen Liu, Jiajun Wu, and Li Fei-Fei. Behavior-
1k: A benchmark for embodied ai with 1,000 everyday
activities and realistic simulation. In Conference on
Robot Learning, pages 80–93. PMLR, 2023.

[38] Minchen Li, Zachary Ferguson, Teseo Schneider, Tim-
othy Langlois, Denis Zorin, Daniele Panozzo, Chen-

fanfu Jiang, and Danny M. Kaufman. Incremental
potential contact: intersection-and inversion-free, large-
deformation dynamics. ACM Trans. Graph., 39(4), aug
2020. ISSN 0730-0301. doi: 10.1145/3386569.3392425.

[39] Minghua Liu, Ruoxi Shi, Linghao Chen, Zhuoyang
Zhang, Chao Xu, Xinyue Wei, Hansheng Chen, Chong
Zeng, Jiayuan Gu, and Hao Su. One-2-3-45++: Fast sin-
gle image to 3d objects with consistent multi-view gener-
ation and 3d diffusion. arXiv preprint arXiv:2311.07885,
2023.

[40] Ziyuan Liu, Wei Liu, Yuzhe Qin, Fanbo Xiang, Minghao
Gou, Songyan Xin, Máximo A. Roa, Berk Çalli, Hao
Su, Yu Sun, and Ping Tan. Ocrtoc: A cloud-based
competition and benchmark for robotic grasping and
manipulation. IEEE Robotics and Automation Letters,
7:486–493, 2021.

[41] Jeffrey Mahler, Florian T Pokorny, Brian Hou, Melrose
Roderick, Michael Laskey, Mathieu Aubry, Kai Kohlhoff,
Torsten Kröger, James Kuffner, and Ken Goldberg. Dex-
net 1.0: A cloud-based network of 3d objects for robust
grasp planning using a multi-armed bandit model with
correlated rewards. In 2016 IEEE international confer-
ence on robotics and automation (ICRA), pages 1957–
1964. IEEE, 2016.

[42] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael
Laskey, Richard Doan, Xinyu Liu, Juan Aparicio Ojea,
and Ken Goldberg. Dex-net 2.0: Deep learning to plan
robust grasps with synthetic point clouds and analytic
grasp metrics. Proceedings of Robotics: Science and
Systems (RSS), 2017.

[43] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong
Guo, Michelle Lu, Kier Storey, Miles Macklin, David
Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and
Gavriel State. Isaac gym: High performance gpu-based
physics simulation for robot learning, 2021.

[44] Sivabalan Manivasagam, Shenlong Wang, Kelvin Wong,
Wenyuan Zeng, Mikita Sazanovich, Shuhan Tan, Bin
Yang, Wei-Chiu Ma, and Raquel Urtasun. Lidarsim:
Realistic lidar simulation by leveraging the real world. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11167–11176,
2020.

[45] Oier Mees, Lukas Hermann, Erick Rosete-Beas, and
Wolfram Burgard. Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot ma-
nipulation tasks. IEEE Robotics and Automation Letters
(RA-L), 7(3):7327–7334, 2022.

[46] Mark Moll, Ioan A Sucan, and Lydia E Kavraki. Bench-
marking motion planning algorithms: An extensible in-
frastructure for analysis and visualization. IEEE Robotics
& Automation Magazine, 22(3):96–102, 2015.

[47] Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Cathera
Yang, Xuanlin Li, Stone Tao, Zhiao Huang, Zhiwei Jia,
and Hao Su. Maniskill: Generalizable manipulation skill
benchmark with large-scale demonstrations. In Thirty-
fifth Conference on Neural Information Processing Sys-

tems Datasets and Benchmarks Track (Round 2), 2021.
[48] Galen E Mullins, Paul G Stankiewicz, and Satyandra K

Gupta. Automated generation of diverse and challenging
scenarios for test and evaluation of autonomous vehicles.
In 2017 IEEE international conference on robotics and
automation (ICRA), pages 1443–1450. IEEE, 2017.

[49] NVIDIA. Nvidia isaac sim. https://developer.nvidia.com/
isaac-sim, 2022.

[50] Octo Model Team, Dibya Ghosh, Homer Walke, Karl
Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey
Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You
Liang Tan, Dorsa Sadigh, Chelsea Finn, and Sergey
Levine. Octo: An open-source generalist robot policy.
https://octo-models.github.io, 2023.

[51] Karl Pearson. Note on regression and inheritance in the
case of two parents. Proceedings of the Royal Society
of London, 58:240–242, 1895. ISSN 03701662. URL
http://www.jstor.org/stable/115794.

[52] Xue Bin Peng, Marcin Andrychowicz, Wojciech
Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018
IEEE international conference on robotics and automa-
tion (ICRA), pages 3803–3810. IEEE, 2018.

[53] Martin Pincus. A monte carlo method for the approxi-
mate solution of certain types of constrained optimization
problems. Operations Research, 18(6):1225–1228, 1970.
ISSN 0030364X, 15265463. URL http://www.jstor.org/
stable/169420.

[54] Xavier Puig, Eric Undersander, Andrew Szot,
Mikael Dallaire Cote, Tsung-Yen Yang, Ruslan Partsey,
Ruta Desai, Alexander William Clegg, Michal Hlavac,
So Yeon Min, et al. Habitat 3.0: A co-habitat for humans,
avatars and robots. arXiv preprint arXiv:2310.13724,
2023.

[55] Haozhi Qi, Ashish Kumar, Roberto Calandra, Yinsong
Ma, and Jitendra Malik. In-hand object rotation via rapid
motor adaptation. In Conference on Robot Learning,
2022.

[56] Haozhi Qi, Ashish Kumar, Roberto Calandra, Yi Ma, and
Jitendra Malik. In-hand object rotation via rapid motor
adaptation. In Conference on Robot Learning, pages
1722–1732. PMLR, 2023.

[57] Kanishka Rao, Chris Harris, Alex Irpan, Sergey Levine,
Julian Ibarz, and Mohi Khansari. Rl-cyclegan: Reinforce-
ment learning aware simulation-to-real. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 11154–11163, 2020.

[58] Scott E. Reed, Konrad Zolna, Emilio Parisotto, Ser-
gio Gómez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay,
Jost Tobias Springenberg, Tom Eccles, Jake Bruce, Ali
Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen,
Raia Hadsell, Oriol Vinyals, Mahyar Bordbar, and Nando
de Freitas. A generalist agent. Transactions on Machine
Learning Research, 2022.

[59] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,

 https://developer.nvidia.com/isaac-sim
 https://developer.nvidia.com/isaac-sim
https://octo-models.github.io
http://www.jstor.org/stable/115794
http://www.jstor.org/stable/169420
http://www.jstor.org/stable/169420

Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub,
Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat:
A platform for embodied ai research. In Proceedings
of the IEEE/CVF international conference on computer
vision, pages 9339–9347, 2019.

[60] Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua
Liu, Chao Xu, Xinyue Wei, Linghao Chen, Chong Zeng,
and Hao Su. Zero123++: a single image to consis-
tent multi-view diffusion base model. arXiv preprint
arXiv:2310.15110, 2023.

[61] C. Spearman. The proof and measurement of association
between two things. The American Journal of Psychol-
ogy, 100(3/4):441–471, 1987. ISSN 00029556. URL
http://www.jstor.org/stable/1422689.

[62] Sanjana Srivastava, Chengshu Li, Michael Lingelbach,
Roberto Mart’in-Mart’in, Fei Xia, Kent Vainio, Zheng
Lian, Cem Gokmen, S. Buch, C. Karen Liu, Silvio
Savarese, Hyowon Gweon, Jiajun Wu, and Li Fei-Fei.
Behavior: Benchmark for everyday household activities
in virtual, interactive, and ecological environments. In
Conference on Robot Learning, pages 477–490. PMLR,
2022.

[63] Andrew Szot, Alexander Clegg, Eric Undersander,
Erik Wijmans, Yili Zhao, John Turner, Noah Maestre,
Mustafa Mukadam, Devendra Singh Chaplot, Oleksandr
Maksymets, Aaron Gokaslan, Vladimı́r Vondruš, Sameer
Dharur, Franziska Meier, Wojciech Galuba, Angel X.
Chang, Zsolt Kira, Vladlen Koltun, Jitendra Malik,
Manolis Savva, and Dhruv Batra. Habitat 2.0: Training
home assistants to rearrange their habitat. Advances
in Neural Information Processing Systems, 34:251–266,
2021.

[64] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider,
Wojciech Zaremba, and Pieter Abbeel. Domain ran-
domization for transferring deep neural networks from
simulation to the real world. In IROS, pages 23–30.
IEEE, 2017.

[65] Karl Van Wyk, Joe Falco, and Elena Messina. Robotic
grasping and manipulation competition: Future tasks to
support the development of assembly robotics. In Robotic
Grasping and Manipulation: First Robotic Grasping and
Manipulation Challenge, RGMC 2016, Held in Conjunc-
tion with IROS 2016, Daejeon, South Korea, October 10–
12, 2016, Revised Papers 1, pages 190–200. Springer,
2018.

[66] Homer Walke, Kevin Black, Abraham Lee, Moo Jin Kim,
Max Du, Chongyi Zheng, Tony Zhao, Philippe Hansen-
Estruch, Quan Vuong, Andre He, Vivek Myers, Kuan
Fang, Chelsea Finn, and Sergey Levine. Bridgedata v2:
A dataset for robot learning at scale. In Conference on
Robot Learning (CoRL), 2023.

[67] Xinyue Wei, Minghua Liu, Zhan Ling, and Hao Su.
Approximate convex decomposition for 3d meshes with
collision-aware concavity and tree search. ACM Trans-
actions on Graphics (TOG), 41(4):1–18, 2022.

[68] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao

Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu
Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J.
Guibas, and Hao Su. Sapien: A simulated part-based
interactive environment. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11097–11107, 2020.

[69] Annie Xie, Lisa Lee, Ted Xiao, and Chelsea Finn.
Decomposing the generalization gap in imitation learn-
ing for visual robotic manipulation. arXiv preprint
arXiv:2307.03659, 2023.

[70] Kaizhi Yang, Xiaoshuai Zhang, Zhiao Huang, Xuejin
Chen, Zexiang Xu, and Hao Su. Movingparts: Motion-
based 3d part discovery in dynamic radiance field. In
The Twelfth International Conference on Learning Rep-
resentations, 2024.

[71] Ze Yang, Yun Chen, Jingkang Wang, Sivabalan Mani-
vasagam, Wei-Chiu Ma, Anqi Joyce Yang, and Raquel
Urtasun. Unisim: A neural closed-loop sensor simulator.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 1389–1399,
2023.

[72] Zhao-Heng Yin, Binghao Huang, Yuzhe Qin, Qifeng
Chen, and Xiaolong Wang. Rotating without seeing:
Towards in-hand dexterity through touch. In Robotics:
Science and Systems, 2023.

[73] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian,
Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-
world: A benchmark and evaluation for multi-task and
meta reinforcement learning. In Conference on robot
learning, pages 1094–1100. PMLR, 2020.

[74] Jingwei Zhang, Lei Tai, Peng Yun, Yufeng Xiong, Ming
Liu, Joschka Boedecker, and Wolfram Burgard. Vr-
goggles for robots: Real-to-sim domain adaptation for
visual control. IEEE Robotics and Automation Letters, 4
(2):1148–1155, 2019.

[75] Yunchu Zhang, Liyiming Ke, Abhay Deshpande, Ab-
hishek Gupta, and Siddhartha S. Srinivasa. Cherry-
picking with reinforcement learning. In Robotics: Sci-
ence and Systems, 2023.

[76] Gaoyue Zhou, Victoria Dean, Mohan Kumar Srirama,
Aravind Rajeswaran, Jyothish Pari, Kyle Hatch, Aryan
Jain, Tianhe Yu, Pieter Abbeel, Lerrel Pinto, Chelsea
Finn, and Abhinav Gupta. Train offline, test online: A
real robot learning benchmark. In IEEE International
Conference on Robotics and Automation, ICRA 2023,
London, UK, May 29 - June 2, 2023, pages 9197–9203.
IEEE, 2023. doi: 10.1109/ICRA48891.2023.10160594.

[77] Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto
Martı́n-Martı́n, Abhishek Joshi, Soroush Nasiriany, and
Yifeng Zhu. robosuite: A modular simulation frame-
work and benchmark for robot learning. arXiv preprint
arXiv:2009.12293, 2020.

http://www.jstor.org/stable/1422689

APPENDIX A
CONTRIBUTIONS

Project leads: Xuanlin Li, Kyle Hsu
Main Methodology: Xuanlin Li, Jiayuan Gu, Kyle Hsu
SIMPLER Environment Building: Xuanlin Li, Jiayuan Gu,
Kyle Hsu
SIMPLER-SAPIEN Implementation & Experiments: Xu-
anlin Li, Jiayuan Gu
SIMPLER-Isaac Sim Implementation & Experiments:
Kyle Hsu
Real Robot Experiments: Homer Rich Walke, Oier Mees,
Ted Xiao, Kyle Hsu, Karl Pertsch, Ishikaa Lunawat, Isabel
Sieh, and people in acknowledgements
Paper Writing: Xuanlin Li, Karl Pertsch, Kyle Hsu, Quan
Vuong, Ted Xiao, Jiayuan Gu, Oier Mees
SIMPLER Codebase Release: Xuanlin Li, Jiayuan Gu, Karl
Pertsch, Kyle Hsu, Oier Mees
Website: Oier Mees, Xuanlin Li, Ted Xiao, Karl Pertsch
Video: Kyle Hsu, Karl Pertsch
Advising: Karl Pertsch, Oier Mees, Chuyuan Fu, Sean Kir-
mani, Sergey Levine, Jiajun Wu, Chelsea Finn, Hao Su, Quan
Vuong, Ted Xiao

APPENDIX B
FULL ENVIRONMENT AND EVALUATION PROTOCOL

DETAILS

In this section, we provide detailed descriptions of our
SIMPLER environments along with our simulation and real-
world evaluation protocols.

For the Google Robot, we adopt the following language-
conditioned tasks:

• “pick coke can”. The robot is instructed to grasp the
empty coke can on the table and lift it up. In the default
setting, no distractors are added to the scene. We place the
coke can in 3 different orientations: horizontally laying,
vertically laying, and standing. For each orientation, we
place the coke can at 25 grid positions within a rectangle
on the tabletop, yielding 25 trials per orientation and 75
trials in total.

• “move {obj1} near {obj2}”. We place a triplet of
objects on the tabletop in a triangle pattern. In each trial,
one object serves as the source object, one serves as the
target, and the other serves as the distractor (this creates
6 trials for each triplet and each triangle pattern). We
randomly choose 5 triplets of objects among a total of 8
objects (blue plastic bottle, pepsi can, orange, 7up can,
apple, sponge, coke can, redbull can), and adopt 2 triangle
patterns (upright and inverted). This creates a total of
5× 2× 6 = 60 trials. The 5 triplets chosen are:

– blue plastic bottle, pepsi can, orange
– 7up can, apple, sponge
– coke can, redbull can, apple
– sponge, blue plastic bottle, 7up can
– orange, pepsi can, redbull can

• “(open / close) (top / middle / bottom) drawer”. The
robot is positioned in front of a cabinet that contains 3

drawers and instructed to open / close a specific drawer,
testing its ability to manipulate articulated objects. We
place the robot at 9 grid positions within a rectangle on
the floor, yielding a total of 9× 3× 2 = 54 trials.

• “open top drawer; place apple into top drawer”. The
robot opens the top drawer and places the apple from
the cabinet top into the top drawer, testing its ability to
perform longer-horizon tasks. We place the robot at 3
different positions on the floor and the apple at 9 different
positions within a grid on the cabinet top, yielding a total
of 3 × 9 = 27 trials. Initially, the policies receive the
“open top drawer” instruction. We switch to the “place
apple into top drawer” instruction once the robot outputs
the “terminate” token or after half of the time limit has
elapsed.

For the WidowX + Bridge (with WidowX-250 6DOF robot),
we adopt the following tasks:

• “put the spoon on the towel”. We place the spoon on
a vertex of a square (with edge length 15cm) on the
tabletop, and we place the towel on another vertex. The
spoon’s initial orientation switches between horizontal
and vertical, requiring the robot to perform gripper re-
orientation. This creates a total of 2× 12 = 24 trials.

• “put carrot on plate”. We adopt a similar setup as “put
the spoon on the towel”, replacing the spoon with carrot
and the towel with plate.

• “stack the green block on the yellow block”. We place
a green block on a vertex of a square on the tabletop, and
we position a yellow block on another vertex. The block
dimensions are 3cm. We also adopt two differently-sized
squares (edge length 10cm and 20cm). This creates a total
of 2× 12 = 24 trials.

• “put eggplant into yellow basket”. We place an eggplant
on the right basin of a sink, and we place a yellow basket
on the left basin. The eggplant is dropped into the sink
at a random position and orientation, and we ensure that
the eggplant is directly graspable (i.e., not too close to
the edges of the sink basin). We perform a total of 24
trials.

The number of evaluation trials we present above pertain to
the real-world evaluation setup. For our “Variant Aggregation”
simulation evaluation setup, the number of trials is multiplied
by the number of simulation environment variants. For our
“Visual Matching” simulation evaluation setup, the number of
trials is multiplied by the number of tuned robot arm colors
for the Google Robot evaluation setup, along with the number
of seeds for the Octo policies.

APPENDIX C
MORE IMPLEMENTATION DETAILS OF OUR REAL-TO-SIM

EVALUATION SYSTEM

A. Robot Controllers

Google Robot Given translation, rotation, and gripper ac-
tion output from a model, we adopt Algorithm 1 in simulator
to execute the action commands. The simulation frequency

Algorithm 1 Google Robot Controller in Simulation

Require: (1) Current end-effector action (xa, Ra), along with sensed
arm joint positions and velocities qarm, varm; (2) Current gripper
action ga, along with sensed gripper joint position and velocity
qgrip, vgrip; (3) Simulation frequency Hsim (501 in our implementa-
tion), action output frequency (control frequency) Hctrl (3 in our
implementation following [6]); (4) Arm velocity, acceleration,
and jerk limits Larm (equal to 1.5, 2.0, 50.0 respectively); (5)
Gripper velocity, acceleration, and jerk limits Lgrip (equal to 1.0,
7.0, 50.0 respectively); (6) Current action timestep T within an
episode; (7) A planner that takes goal and initial joint positions
and velocities as input (along with velocity, acceleration, and jerk
constraints), and outputs a time-parametrized trajectory.

1: # Arm motion planning
2: (x, R) = ForwardKinematics(qarm)
3: (xgoal, Rgoal) = (xa + x, Ra ·Rarm)
4: (qgoal, vgoal) = (InverseKinematics(xgoal, Rgoal, qarm), 0.0)
5: ArmPlan = Planner(qgoal, vgoal, qarm, varm, Larm)
6: # Gripper motion planning
7: if T = 0 then ▷ At the beginning of episode
8: qlastplan,grip, vlastplan,grip = qgrip, 0.0
9: qlastgoal,grip = qgrip

10: end if
11: if |ga| < 0.01 then ▷ Small action filtering
12: qgoal,grip = qlastgoal,grip
13: else
14: qgoal,grip = qlastplan,grip + ga
15: end if
16: vgoal,grip = 0.0
17: GripPlan = Planner(qgoal,grip, vgoal,grip,

qlastplan,grip, vlastplan,grip, Lgrip)
18: # Execute arm and gripper plans at each simulation step
19: for each i = 1 · · · Hsim

Hctrl
do

20: t = i
Hsim

21: qlastplan, = ArmPlan(t)
22: SetArmJointPosTarget(qlastplan)
23: qlastplan,grip, vlastplan,grip = GripPlan(t)
24: SetGripperJointPosTarget(qlastplan,grip)
25: SetGripperJointVelTarget(vlastplan,grip)
26: end for each
27: qlastgoal,grip = qgoal,grip
28: T = T + 1

in the algorithm refers to the number of simulation steps per
second, while the control frequency refers to the number of
control commands (policy action outputs) per second. We use
the open-source library Ruckig1 for time-optimal joint motion
planning with velocity, acceleration, and jerk constraints. Note
that the duration of planned trajectories may exceed the
interval between two control commands.

WidowX We present our WidowX controller implementa-
tion in Algorithm 2.

B. Robot and Object Assets

Robots For Google Robot, we convert the publically-
released MuJoCo .mjcf robot description to URDF robot
description. We also refine the collision mesh of the robot
base link from the original assets to prevent erroneous mesh
penetrations. For WidowX, we directly export the URDF robot

1https://github.com/pantor/ruckig

Algorithm 2 WidowX Controller in Simulation
Require: (1) Current end-effector action (xa, Ra), along with sensed

arm joint positions qarm; (2) Current gripper action ga, along with
sensed gripper joint position qgrip; (3) Simulation frequency Hsim
(500 in our implementation), action output frequency (control
frequency) Hctrl (5 in our implementation following); (4) Current
action timestep T within an episode; (5) A function S that maps
a R3 position vector and a 3x3 SO(3) rotation matrix to a 4x4
SE(3) matrix.

1: if T = 0 then ▷ At the beginning of episode
2: qlastgoal = qarm
3: end if
4: (x, R) = ForwardKinematics(qlastgoal)
5: (xgoal, Rgoal) = S−1(S(x, I) · S(xa, Ra)·

S(−x, I) · S(x, Rarm))
6: qgoal = InverseKinematics(xgoal, Rgoal, qarm)
7: qgoal,grip = ga
8: SetArmJointPosTarget(qgoal)
9: SetGripperJointPosTarget(qgoal, grip)

10: qlastgoal = qgoal
11: T = T + 1

descriptions from the official Interbotix repository using ROS.
To simulate the Google Robot, we find that the Projected
Gauss-Seidel solver in PhysX causes mesh penetration behav-
iors during the process of object grasping. Thus, we enable the
Temporal Gauss-Seidel solver in both SAPIEN and Isaac Sim’s
simulation backends to produce correct grasping behaviors.

The Google Robot uses a customized egocentric camera
mounted on the robot head, while the WidowX + Bridge V2
setup uses a Logitech C920 third-view camera.

Objects We adopt the following procedure to obtain object
assets. Except creating precise models for articulated objects
like cabinets, the process does not involve heavy manual effort.

• Obtain raw 3D object models from public repositories
(e.g., Objaverse [15]), from 3D scanning of objects pur-
chased from Amazon, from single-view 3D generation
(e.g., One-2-3-45++ [39]), or from manual modeling
based on precise measurements of real-world counterparts
(we only used the last technique for articulated objects
like cabinets).

• Process 3D object models in Blender such that the
dimensions of objects are similar to those used in the
real world, and that the object meshes do not contain too
many vertices (to limit the sizes of object meshes).

• Optionally, use our Visual Matching approach (see below)
to improve the texture of 3D object models.

• Export visual mesh and collision mesh of objects. For
collision mesh, further perform CoACD [67] to obtain
watertight and locally convex collision meshes. Option-
ally, simplify the resulting collision mesh and perform
minor modifications using Blender (e.g., make the bottom
of cans or bottles flat).

• Set the object to have a simple uniform density by
querying their common material density in GPT-4 or
google search, or (for objects with non-uniform densities
like empty coke can), querying their mass and dividing
by their visual mesh volume.

Pick

Coke Can

Move Near

Open / Close

Drawer

Base

Environment TextureLightingΔ ΔBackgroundΔ

Fig. 11: Subset of environment variations under our “Variant Aggregation” evaluation setup, visualized in SAPIEN from Google Robot’s
egocentric view. The variations cover different lightings, backgrounds and table textures and are modified from ReplicaCAD [59] scenes.

To perform visual matching of object textures, we adopt the
following steps: (1) Crop the target object in a real image using
SAM [34]; (2) Perform a coarse estimation of object pose
by importing it into the simulation and adjusting its position
such that its simulation segment mask overlaps with the real
one; (3) Employ differential rendering (using Nvdiffrast) to
optimize the simulation asset’s pose such that it precisely
aligns with the real object’s segmentation mask; (4) “Unpro-
ject” the real object’s RGB texture values onto the simulation
object mesh; (5) Optionally, generate the remaining views of
the object through a diffusion model (Zero123++ [60]), and
refine the poses of novel views using a rendering loss with
the existing object view. Finally, unproject the novel view
textures onto the simulation object mesh. This whole process
is semi-automatic, and can thus be completed efficiently.
We release command-line python scripts for this process at
https://github.com/Jiayuan-Gu/GeTex.

C. SIMPLER-Variant Aggregation

A common approach for addressing visual gaps in sim-to-
real policy training is domain randomization. By performing
training across a range of randomized parameters, such as tex-
tures and lighting, prior works aim to obtain policies that are
robust to visual distribution shifts in the real-world [52, 64].
Similarly, in real-to-sim evaluation, we can aggregate evalua-
tion results across a range of visual simulator characteristics to
obtain a more faithful signal for the policy’s performance. In
practice, we implement this SIMPLER-“Variant Aggregation”
approach as an alternative to SIMPLER-Visual Matching,
described in Section IV-B. Concretely, we create a “base”
version of our simulation environment and then creating “vari-
ants” of this environment along four axes of visual variation:
background, lighting, distractors, and table texture. For each
axis, we construct 2 variations of the base setup similar
to [69], covering backgrounds from different rooms, lighter
and darker lighting, fewer and more distractors, and solid color
and complex table textures. We visualize an example of such

simulator variations for various table-top tasks in Fig. 11. We
average policy performance in simulation across all variants
of an environment to obtain our final performance estimate.

APPENDIX D
FULL RESULTS FOR REAL-AND-SIM RELATIVE POLICY

PERFORMANCE CORRELATION EXPERIMENTS

In Table IV and Table V, we present full evaluation results
for our experiments in Sec. VI-B, which demonstrate that
SIMPLER environments show strong performance relationship
correlations with real-world evaluations.

APPENDIX E
FULL RESULTS FOR REAL-AND-SIM POLICY BEHAVIOR

CORRELATION EXPERIMENTS UNDER ENVIRONMENT
DISTRIBUTION SHIFTS

In Table VI, Table VII, and Table VIII, we present full
evaluation results for our experiments in Sec. VI-C, which
demonstrate that SIMPLER environments show strong policy
behavior correlations with real-world evaluations under differ-
ent environment distribution shifts.

APPENDIX F
FULL RESULTS FOR MAIN PAPER ABLATION

EXPERIMENTS

We present detailed results for our main paper’s ablations
in Table IX, Table X, and Table XI.

APPENDIX G
MORE EXPERIMENT RESULTS

A. More Ablations
Simulated vs. simulation-free evaluation approaches: To
evaluate and select real-world robot manipulation policies, a

2After running 2 real evaluation trials, robot operators decided that since
this policy would potentially damage the robot on the Drawer tasks, the real
evaluation was terminated.

3As real evaluation was terminated due to risk of damaging the robot, we
expect the MMRV to be less than this number if real evaluation were to
continue.

https://github.com/Jiayuan-Gu/GeTex

Google Robot
Evaluation Setup Policy

Pick Coke Can Move Near Open / Close Drawer Open Top Drawer
and Place Apple

Horizontal
Laying

Vertical
Laying Standing Average Average Open Close Average Average

Real Eval

RT-1 (Converged) 0.960 0.880 0.720 0.853 0.633 0.815 0.926 0.870 0.185
RT-1 (15%) 1.000 0.960 0.800 0.920 0.583 0.704 0.889 0.796 0.185
RT-1-X 0.880 0.560 0.840 0.760 0.450 0.519 0.741 0.630 0.407
RT-2-X 0.920 0.800 1.000 0.907 0.733 0.333 0.630 0.481 0.074
Octo-Base 0.440 0.200 0.240 0.293 0.350 0.148 0.519 0.333 0.000
RT-1 (Begin) 0.200 0.000 0.200 0.133 0.017 0.000 0.000 0.0002 0.000

SIMPLER Eval
(Variant Aggregation)

RT-1 (Converged) 0.969 0.760 0.964 0.898 0.500 0.270 0.376 0.323 0.026
RT-1 (15%) 0.920 0.704 0.813 0.813 0.446 0.212 0.323 0.267 0.021
RT-1-X 0.569 0.204 0.698 0.490 0.323 0.069 0.519 0.294 0.101
RT-2-X 0.822 0.754 0.893 0.823 0.792 0.333 0.372 0.353 0.206
Octo-Base 0.005 0.000 0.013 0.006 0.031 0.000 0.021 0.011 0.000
RT-1 (Begin) 0.022 0.013 0.031 0.022 0.040 0.005 0.132 0.069 0.000

MMRV↓ 0.093 0.133 0.140 0.084 0.111 0.303 0.3213 0.321 0.148
Pearson r↑ 0.947 0.937 0.933 0.960 0.887 0.629 0.613 0.737 0.235

SIMPLER Eval
(Visual Matching)

RT-1 (Converged) 0.960 0.900 0.710 0.857 0.442 0.601 0.861 0.730 0.065
RT-1 (15%) 0.860 0.790 0.480 0.710 0.354 0.463 0.667 0.565 0.130
RT-1-X 0.820 0.330 0.550 0.567 0.317 0.296 0.891 0.597 0.213
RT-2-X 0.740 0.740 0.880 0.787 0.779 0.157 0.343 0.250 0.037
Octo-Base 0.210 0.210 0.090 0.170 0.042 0.009 0.444 0.227 0.000
RT-1 (Begin) 0.050 0.000 0.030 0.027 0.050 0.000 0.278 0.139 0.000

MMRV↓ 0.027 0.027 0.053 0.031 0.111 0.000 0.123 0.055 0.000
Pearson r↑ 0.981 0.964 0.942 0.976 0.855 0.983 0.768 0.915 0.969

TABLE IV: Real-world and SAPIEN evaluation results across different policies on Google Robot tasks. We present success rates for the
“Variant Aggregation” and “Visual Matching” approaches in Sec. IV-B. We calculate the Mean Maximum Rank Violation (“MMRV”, lower
is better) and the Pearson correlation coefficient (“Pearson r”, higher is better) to assess the alignment between simulation and real-world
relative performances across different policies.

WidowX+Bridge
Evaluation Setup Policy

Put Spoon on Towel Put Carrot on Plate Stack Green Block on Yellow Block Put Eggplant in Yellow Basket

Grasp Spoon Success Grasp Carrot Success Grasp Green Block Success Grasp Eggplant Success

Real Eval
RT-1-X 0.042 0.000 0.167 0.000 0.000 0.000 0.033 0.000
Octo-Base 0.500 0.333 0.500 0.250 0.292 0.000 0.400 0.233
Octo-Small 0.542 0.417 0.208 0.083 0.583 0.125 0.700 0.433

SIMPLER Eval
(Visual Matching)

RT-1-X 0.167 0.000 0.208 0.042 0.083 0.000 0.000 0.000
Octo-Base 0.347 0.125 0.528 0.083 0.319 0.000 0.667 0.431
Octo-Small 0.778 0.472 0.278 0.097 0.403 0.042 0.875 0.569

MMRV↓ 0.000 0.000 0.000 0.111 0.000 0.000 0.000 0.000
Pearson r↑ 0.778 0.827 0.995 0.575 0.964 1.000 0.995 0.990

TABLE V: Real-world and SAPIEN simulation evaluation results for the WidowX + Bridge setup. We report both the final success rate
(“Success”) along with partial success (e.g., “Grasp Spoon”).

Policy Distribution Shift
Pick Coke Can Move Near Avg. Real TableTop [69]

|∆ Success| MMRV↓ r ↑ |∆ Success| MMRV↓ r ↑ |∆ Success| MMRV↓ r ↑ |∆ Success|

RT-1
w/o Aug

Background 0.013

0.000 0.779

0.083

0.055 0.939

0.048

0.000 0.831

0.028
Lighting 0.040 0.075 0.057 0.083
Distractors 0.027 0.133 0.080 0.111
Table Texture 0.113 0.175 0.144 0.389
Camera Pose 0.753 0.192 0.473 0.458

RT-1
+Aug

Background 0.153

0.041 0.984

0.092

0.125 0.721

0.123

0.041 0.970

0.167
Lighting 0.033 0.117 0.075 0.042
Distractors 0.033 0.084 0.059 0.083
Table Texture 0.220 0.159 0.189 0.167
Camera Pose 0.613 0.175 0.394 0.375

TABLE VI: Impact of various distribution shifts on the tabletop manipulation performance of RT-1 policies trained with and without image
augmentation. SIMPLER evaluations accurately track the policies’ robustness to distribution shifts, exhibiting low Mean Maximum Rank
Violation (“MMRV”) and high Pearson correlation coefficient (“r”) with the real world evaluations [69].

Policy Robustness Factor Pick Coke Can Move Near

RT-1
w/o Aug

Base Setup 0.920 0.467
Background 0.933/0.907 0.533/0.567
Lighting 0.960/0.960 0.483/0.600
Distractors 0.880/0.901 0.600a

Table Texture 0.867/0.747 0.550/0.200
Camera Pose 0.053/0.280 0.117/0.433

RT-1
+Aug

Base Setup 0.800 0.383
Background 0.747/0.547 0.483/0.467
Lighting 0.760/0.773 0.517/0.483
Distractors 0.813/0.747 0.467
Table Texture 0.667/0.493 0.450/0.133
Camera Pose 0.267/0.107 0.200/0.217

aThe base setup environment already contains distractors, so we construct
environment variants without distractors.

TABLE VII: Success rates of different out-of-distribution general-
ization factors on the tabletop manipulation performance of RT-1
policies in the SAPIEN simulator. “a/b” denote results on different
environment variants (lighting: darker / brighter; table texture: solid
color / contrastively patterned; camera pose: oriented lower / higher).

Policy Sim Success Range Real Success
Orig Arm Texture OOD Arm Texture

RT-1-X [0.507, 0.653] 0.760 0.520
Octo-Base [0.000, 0.293] 0.293 0.000

TABLE VIII: Impact of arm textures on the success rates of “Pick
Coke Can” task in the SAPIEN simulator (Visual Matching evaluation
setup) and in the real-world. The ranges of simulation success rates
across multiple (tuned and untuned) robot arm colors can predict
policy sensitivity to real-world OOD arm textures.

widely-adopted approach involves calculating the MSE loss
between predicted and ground-truth actions on a set of held-
out validation demonstration trajectories. We are thus inter-
ested in the following question: Does simulated evaluation
produce significantly better real-to-sim relative performance
correlation than simulation-free approaches? We conduct an
experiment where we calculate the action-prediction MSE loss
on the Google Robot dataset and the Bridge dataset. For the
Bridge dataset, we randomly select 25 trajectories from the
validation demonstration split. For the Google Robot dataset,
as a validation split is not publicly available, we randomly
select 25 trajectories from the training demonstrations.

We report the results in Table XII. We find that SIMPLER
evaluation produces significantly better correlations between
real-and-sim performances across different policies, as high-
lighted by a substantially-lower MMRV and a substantially-
higher Pearson correlation coefficient. Furthermore, as demon-
strated in Sec. VI-C of the main paper, SIMPLER evaluation
reveals finegrained policy behavior modes, such as robustness
to visual distribution shifts, offering insights beyond policy
performance comparisons, unlike simulation-free evaluations.
Is simulated evaluation still effective on single-task poli-
cies? Previously in the main paper, we focused our simulated
evaluation on policies trained on multi-task datasets, such as
the Google Robot RT-1 dataset and the Open-X-Embodiment
dataset, which contain ≥80k demonstrations. In this section,
we further ask the question: Is SIMPLER evaluation still effec-
tive on policies trained on smaller-scale data, which are po-
tentially more sensitive to real-to-sim visual and control gaps?

To this end, we conduct an experiment where we train RT-1
only with the “pick coke can” demonstrations and evaluate its
real and simulation performance. We also compare the MMRV
and the Pearson correlation before and after incorporating this
single-task policy into the Google Robot experiments. Results
are shown in Table XIII. We find that our simulated evaluation
effectively reflects the performance rankings of the newly-
added single-task policy, with the MMRV remaining low and
the Pearson Coefficient remaining high. This demonstrates
SIMPLER evaluation’s versatility across policies trained on
diverse data scales.

B. Other Metrics: Kruskal Wallis

In our previous analysis, we primarily focused on met-
rics that measure real-to-sim relative performance alignment
between policies. As we match real-to-sim visual input ap-
pearance in our Visual Matching evaluation approach, it also
becomes meaningful to measure the simulation distribution
shift of absolute performance from real-world evaluations,
even though we do not expect the real-to-sim absolute per-
formances to exactly match. Let the real-world evaluation
results of N policies be r = {r1, r2, . . . , rN}, where ri =
(rij)

Ntrial
j=1 is the indicator of each trial’s success in the real-

world. Let the corresponding simulation evaluation results be
s = {s1, s2, . . . , sN}, where si = (sij)

Ntrial
j=1 . We perform

Kruskal-Wallis test for each individual policy (i.e., between
each ri and si) to measure whether simulation evaluations
exhibit significant distribution shift from real evaluations. We
then report the number of policies with significant distribution
shift (which we denote as “Kruskal-#Policy p<0.05”).

We present the Kruskal-Wallis results in Tab. XIV. We find
that with the Visual Matching evaluation approach, the simula-
tion trial success distribution is not significantly different from
the real results (p ≥ 0.05) across many tasks and policies,
demonstrating the effectiveness of our simulation evaluation
tool. We also note that our MMRV and the Kruskal metrics
complement each other’s limitations, with the former provid-
ing a real-to-sim relative performance alignment perspective,
and the latter providing an absolute performance alignment
perspective.

Components Open Drawer Close Drawer

Background Drawer Robot RT-1 (Converged) RT-1 (15%) RT-1-X MMRV↓ RT-1 (Converged) RT-1 (15%) RT-1-X MMRV↓

Real Real Real 0.815 0.704 0.519 N/A 0.926 0.889 0.741 N/A
GreenScreen Curated Curated 0.703 0.556 0.333 0.000 0.889 0.667 0.851 0.099
GreenScreen Curated Original 0.444 0.444 0.259 0.111 0.741 0.630 0.926 0.173
GreenScreen Original Original 0.593 0.519 0.148 0.000 0.852 0.778 0.963 0.173
ReplicaCAD Curated Curated 0.407 0.259 0.111 0.000 0.667 0.481 0.778 0.173
ReplicaCAD Curated Original 0.630 0.407 0.074 0.000 0.630 0.593 0.667 0.173
ReplicaCAD Original Curated 0.556 0.296 0.074 0.000 0.667 0.704 0.815 0.173
ReplicaCAD Original Original 0.556 0.333 0.074 0.000 0.704 0.556 0.741 0.173

TABLE IX: Impact of real-to-sim visual gaps on real-and-sim performance correlations. We report the success rates of 3 different policies
on 2 tasks: Open Drawer and Close Drawer. The settings with the smallest MMRV and the smallest absolute performance gap with the real
performance are highlighted. Using a combination of “green-screened” background and curated foreground object and robot assets provides
the best correlation.

Gripper Friction Coefficient

Coke Can Mass 0.25 0.50 1.0 2.0

10 g 0.957 0.967 0.971 0.978
20 g 0.969 0.975 0.978 0.977
40 g 0.963 0.976 0.976 0.976
80 g 0.962 0.962 0.975 0.990

(a) Pearson r between real and SIMPLER evaluations on the Pick Coke Can
task under different settings of can mass and gripper friction coefficient. The
MMRV is 0.031 in all cases. The use of empty coke cans follows the setup
from the Google Robot demonstration dataset and the RT-1 paper [6].

Cabinet Joint Friction 0.0125 0.025 0.05 0.10 0.15 0.20

MMRV↓ 0.055 0.055 0.055 0.055 0.105 0.055
Pearson r↑ 0.930 0.941 0.915 0.923 0.903 0.928

(b) MMRV and Pearson r between real and SIMPLER evaluations on the
Open/Close Drawer tasks under different settings of cabinet joint friction.

TABLE X: SIMPLER is robust to imprecisely estimated physical
simulation parameters such as object mass and friction coefficients,
as indicated by the low MMRV and high Pearson r in both ablation
studies. We use the 6 policies from our Google Robot experiments
in these ablations.

Google Robot
Evaluation Setup Policy

Pick Coke Can Move Near

Horizontal
Laying

Vertical
Laying Standing Avg. Success Avg. Success

Real Eval

RT-1 (Converged) 0.960 0.880 0.720 0.853 0.633
RT-1 (15%) 1.000 0.960 0.800 0.920 0.583
RT-1-X 0.880 0.560 0.840 0.760 0.450
Octo-Base 0.440 0.200 0.240 0.293 0.350
RT-1 (Begin) 0.200 0.000 0.200 0.133 0.017

SIMPLER Eval
(Isaac, Variant Aggre.)

RT-1 (Converged) 0.418 0.377 0.436 0.410 0.150
RT-1 (15%) 0.428 0.306 0.590 0.441 0.100
RT-1-X 0.340 0.182 0.618 0.380 0.125
Octo-Base 0.015 0.020 0.010 0.015 0.020
RT-1 (Begin) 0.036 0.040 0.054 0.044 0.000

MMRV↓ 0.096 0.112 0.016 0.064 0.053
Pearson r↑ 0.961 0.949 0.989 0.973 0.865

TABLE XI: Real-world and Isaac Sim evaluation results for the
Google Robot setup. The findings on Isaac Sim are consistent with
the findings on the SAPIEN simulator.

Task Validation Action MSE Sim Eval (Visual Matching)

Pick Coke Can 0.412 / 0.464 0.031 / 0.976
Move Near 0.408 / 0.230 0.111 / 0.855
Open / Close Drawer 0.346 / 0.264 0.055 / 0.915
Open Drawer & Place Apple 0.265 / 0.198 0.000 / 0.969
Put Spoon on Towel 0.389 / -0.951 0.000 / 0.827
Put Carrot on Plate 0.194 / -0.342 0.111 / 0.575
Stack Block 0.125 / -0.857 0.000 / 1.000
Put Eggplant in Basket 0.366 / -1.000 0.000 / 0.990

TABLE XII: MMRV / Pearson correlation comparison between our
Visual Matching simulation evaluation approach and the simulation-
free approach that assesses the MSE between predicted and ground-
truth actions on validation trajectories. For the latter approach, we
calculate the MMRV / Pearson correlation between the negative MSE
and the real policy performance. Our approach yields significantly
better real-and-sim policy performance correlations.

Policy Avg. Real Success Avg. Sim Success
(Visual Matching)

RT-1 (Converged) 0.853 0.857
RT-1 (15%) 0.920 0.710
RT-1 (Single Task Policy) 0.680 0.403
RT-1-X 0.760 0.567
RT-2-X 0.907 0.787
Octo-Base 0.293 0.170
RT-1 (Begin) 0.133 0.027

MMRV↓ 0.027
Pearson r↑ 0.959

TABLE XIII: Real-world and simulated evaluation results on the Pick
Coke Can task, after adding an RT-1 policy trained solely on the Pick
Coke Can demonstrations. Our simulated evaluation remains effec-
tive, exhibiting low MMRV and high Pearson correlation coefficient
with real evaluations.

Google Robot
Evaluation Setup Metric

Pick Coke Can Move Near Open / Close Drawer Open Top Drawer
and Place Apple

Horizontal
Laying

Vertical
Laying Standing Avg. Success Avg. Success Open Close Avg. Success Avg. Success

SIMPLER - Visual Matching Kruskal-#Policy p<0.05 0 0 2 3 3 1 2 2 0

(a)

WidowX+Bridge
Evaluation Setup Metric

Put Spoon on Towel Put Carrot on Plate Stack Green Block on Yellow Block Put Eggplant in Yellow Basket

Grasp Spoon Success Grasp Carrot Success Grasp Green Block Success Grasp Eggplant Success

SIMPLER - Visual Matching Kruskal-#Policy p<0.05 0 0 0 0 0 0 1 0

(b)

TABLE XIV: For our Visual Matching evaluation approach, we conduct Kruskal-Wallis test to assess whether simulation and real-world policy
evaluations exhibit significant distribution shift, even though we do not expect to obtain an exact reproduction of real-world performance.

	Introduction
	Related Work
	Using Physics Simulators for Evaluation of Robot Manipulation Policies
	Problem Formulation
	Metrics for Real-to-Sim Evaluation Pipelines

	Building a Real-to-Sim Evaluation System by Addressing Control and Visual Gaps
	Mitigating the Real-to-Sim Control Gap
	Mitigating the Real-to-Sim Visual Gap

	SIMPLER: Simulated Manipulation Policy Evaluation for Real Robot Setups
	Experimental Results
	Experimental Setup
	SIMPLER Environments Show Strong Performance Correlations with Real-World Evaluations
	SIMPLER Evaluations Accurately Model Policy Robustness to Distribution Shifts
	Ablation Studies

	Conclusion
	Acknowledgements
	Appendix A: Contributions
	Appendix B: Full Environment and Evaluation Protocol Details
	Appendix C: More Implementation Details of Our Real-to-Sim Evaluation System
	Robot Controllers
	Robot and Object Assets
	SIMPLER-Variant Aggregation

	Appendix D: Full Results for Real-and-Sim Relative Policy Performance Correlation Experiments
	Appendix E: Full Results for Real-and-Sim Policy Behavior Correlation Experiments under Environment Distribution Shifts
	Appendix F: Full Results for Main Paper Ablation Experiments
	Appendix G: More Experiment Results
	More Ablations
	Other Metrics: Kruskal Wallis

